Skip to main content
Mathematics LibreTexts

7.A: Answers

  • Page ID
    212068
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Section 7.1

    1. \(f(x)\) and \(y = 3-x\) are one-to-one because their graphs pass the horizontal line test (HLT); \(g(x)\) is not one-to-one because \(g(1) = g(4)\); \(h\) is not because its graph fails the HLT.
    2. The graph of \(f(x)\) fails the HLT; \(y = e^x-2\) is one-to-one because \(y' = e^x >0\) (see Problem 13); \(g(x)\) is one-to-one because the output values are all distinct; the graph of \(h\) passes the HLT.  
    3. The relation is a function if the domain is all people with a Social Security number; ideally, it is a one-to-one function (but due to identity theft and other issues may not be so in practice).  
    4. No two students received the same score.
    5. At most one.
      1. Yes (graph passes HLT).
      2. No, \(f(0) > f(1)\).
      3. No, \(f(0) < f(0.5)\).
    6. \(f'(x) = \frac{1}{x} > 0\) for all \(x > 0\). If \( 0 < a < b \) with \(f(a) = f(b)\), then Rolle’s Theorem guarantees a \(c\) with \( a < c < b \) and \( f'(c) = 0 \), which is impossible. Hence \( f(a) \neq f(b) \)for any \( a \neq b \) on \( (0,\infty) \), which proves that \(f(x)\) is one-to-one.
      1. Yes (each input has exactly one output).
      2. Yes (each input appears only once).
      3. cde
      4. Interchanging inputs and outputs:
        a b c d e f
        f e b a d c
      5. Interchanging inputs and outputs:
        A first-quadrant scatterplot with tickmarks at a, b, c, d, e and f on both axes and red dots at (a,f), (b,e), (c,b), (d,a), (e,d) and (f,c). The horizontal axis has label 'original letter (input)' and the vertical axis 'encoded letter (output).'
      6. They are reflections of each other.
      1. Yes (each output appears only once).
      2. Yes (each input appears only once).
      3. fda
      4. Interchanging inputs and outputs:
        a b c d e f
        d c f e b a
      5. Interchanging inputs and outputs:
        A first-quadrant scatterplot with tickmarks at a, b, c, d, e and f on both axes and red dots at (a,d), (b,f), (c,e), (d,a), (e,c) and (f,b). The horizontal axis has label 'original letter (input)' and the vertical axis 'encoded letter (output).'
      6. It’s the same! (Function is its own inverse.)

    Section 7.2

    1. \(x\) \(f(x)\) \(f'(x)\) \(f^{-1}(x)\) \(\left(f^{-1}\right)'(x)\)
      \(1\) \(3\) \(-3\) \(2\) \(\frac12\)
      \(2\) \(1\) \(2\) \(3\) \(\frac13\)
      \(3\) \(2\) \(3\) \(1\) \(-\frac13\)
    2. \(x\) \(h(x)\) \(h'(x)\) \(h^{-1}(x)\) \(\left(h^{-1}\right)'(x)\)
      \(1\) \(2\) \(2\) \(3\) undefined
      \(2\) \(3\) \(-2\) \(1\) \(\frac12\)
      \(3\) \(1\) \(0\) \(2\) \(-\frac12\)
    3. The graphs of \(f\) and \(f^{-1}\) appear below:
      A graph in the first quadrant with the dashed-black line y=x, a blue curve f that crosses y=x near the origin in a U shape below y=x, then rises and transitions to an inverted-U shape, approaching but staying below y=x before curving away, and a red curve that is the mirror image of the blue curve across y=x.
    4. \(a=b\)
    5. (1) Multiply by \(4\), (2) add \(5\) and (3) divide by \(7\): \(\displaystyle f^{-1}(x) = \frac{4x+5}{7}\)
    6. \(g^{-1}(x) = \frac{x-1}{2}\), hence \(g^{-1}\left(g(1)\right) = \frac{3-1}{2} = 1\) and \(g^{-1}\left(g(7)\right) = \frac{15-1}{2} = 7\).
    7. \(\displaystyle w^{-1}(x) = e^{x-5}\), so \(w^{-1}\left(w(1)\right) = e^{5-5} = 1\).
    8. The graph of \(f^{-1}\) goes through \((3,1)\) and \(\displaystyle \left(f^{-1}\right)'(3) = \frac{1}{f'(1)} > 0\).
    9. \(\displaystyle \left(f^{-1}\right)'(x) = \frac{1}{f'\left(f^{-1}(x)\right)} > 0\), so both \(f\) and \(f^{-1}\) are increasing functions.
    10. \(\displaystyle f(x) = x + 2 \Rightarrow f^{-1}(x) = x-2\) both have slope \(1\) (hence are parallel) but different \(y\)-intercepts.
    11. \(f'(x) = 3 + \cos(x) \geq 2 > 0\), so \(f(x)\) is increasing, hence one-to-one.
    12. \(\displaystyle x = \frac{ay+b}{cy-a} \Rightarrow cxy-ax = ay + b \Rightarrow (cx-a)y = ax+b \Rightarrow y = \frac{ax+b}{cx-a}\) so the function in (d) is its own inverse, and the functions in (a), (b) and (c) are all special cases of (d).
    13. Fold across the river to generate point \(A^*\) (see figure below) then unfold; fold across the road to generate the point \(B^*\), then unfold; connect \(A^*\) and \(B^*\) with a line; fold the line across the river and the road to get the shortest path:
      A red dot A and a blue dot B sit above a horizontal blue line labeled 'river' and to the left of a vertical black line labeled 'road.' A is above and to the left of B. A dashed arrow points from A to a point on the river, another arrow points from there to a point on the 'road,' and a third dashed arrow points from there to back and up to B. A red dot A* is the reflection of A across the river, and a blue dotB* is the reflection of B across the road. A black line segment joins A* to B*, a vertical dashed-black line segment connects A to A*, and a horizontal dashed-black segment connects B to B*. Hash marks indicate that A and A* are equidistant from the river, and that B and B* are equidistant from the road.
    14. Fold across the wall:
      A downward-opening blue parabolic segment is cut off at the bottom by a horizontal black line. Above the parabola on the left is an upward-pointing black arrow. A purple-shaded rectangle labeled 'wall' extends up from the horizontal line through the parabolic segment near its right endpoint. A red curve that is the reflection of the portion of the parabola to the right of the wall ends in a black dot on the horizontal line. Braces indicate that the distance from the dot to the wall is the same as the distance from the wall to the right endpoint of the parabola. Arrows point to the black dot, the red curve and rightmost portion of the parabola with the labels 'landing spot,' 'path after bounce' and 'path if there is no wall.'
      The distance from the wall to the landing spot is the same whether the ball bounces off the wall or passes through it.

    Section 7.3

    1. \(\displaystyle \frac{\pi}{2}\), \(\displaystyle \frac{5\pi}{2}\), \(\displaystyle \frac{9\pi}{2}\)
      1. \(\arcsin(0.3)<1\) but \(\pi-\arcsin(0.3) \approx 2.837\) and \(\arcsin(0.3)+2\pi \approx 6.588\)
      2. \(\arcsin(-0.4)<1\) but \(\pi-\arcsin(-0.4) \approx 3.553\) and \(\arcsin(-0.4)+ 2\pi \approx 5.872\)
      3. \(\displaystyle \frac{5\pi}{6}\), \(\displaystyle \frac{13\pi}{6}\)
      1. \(\arctan(3.2) \approx 1.268\),  \(\pi + 1.268 \approx 4.410\)
      2. \(\arctan(-0.2)+\pi \approx 2.944\), \(\pi + 2.944 \approx 6.086\)
      1. \(\displaystyle \frac45\)
      2. \(\displaystyle \frac43\)
      3. \(\displaystyle \frac53\)
      4. \(\displaystyle \frac35\)
      1. \(\displaystyle \frac{5}{13}\)
      2. \(\displaystyle \frac{5}{12}\)
      3. \(\displaystyle \frac{13}{12}\)
      4. \(\displaystyle \frac{12}{13}\)
    2. The triangle below should help:
      A right triangle with base sqrt(45), height 2 and hypotenuse 7. The angle between base and hypotenuse has measure theta.
      1. \(\displaystyle \frac{2}{\sqrt{45}}\)
      2. \(\displaystyle \frac{\sqrt{45}}{7}\)
      3. \(\displaystyle \frac72\)
      4. \(\displaystyle \frac{\sqrt{45}}{2}\)
    3. The triangle below should help:
      A right triangle with base sqrt(24), height 1 and hypotenuse 5. The angle between base and hypotenuse has measure theta.
      1. \(\displaystyle \sqrt{24}\)
      2. \(\displaystyle \frac{\sqrt{24}}{5}\)
      3. \(\displaystyle \frac{5}{\sqrt{24}}\)
      4. \(\displaystyle \frac{1}{\sqrt{24}}\)
    4. The triangle below should help:
      ans703_15.png
      1. \(\displaystyle \frac{a}{b}\)
      2. \(\displaystyle \frac{a}{\sqrt{a^2+b^2}}\)
      3. \(\displaystyle \frac{b}{\sqrt{a^2+b^2}}\)
      4. \(\displaystyle \frac{b}{a}\)
    5. For \(\displaystyle 0 < \theta < \frac{\pi}{2}\), \(\cos^2(\theta)+\sin^2(\theta) = 1 \Rightarrow \sin(\theta) = \sqrt{1-\cos^2(\theta)}\) and \(\cos(\theta) = \sqrt{1-\sin^2(\theta)}\) so:
      1. \(\displaystyle \sin(\arccos(x)) = \sqrt{1-x^2}\)
      2. \(\displaystyle \cos(\arcsin(x)) = \sqrt{1-x^2}\)
      3. \(\displaystyle \sec(\arccos(x)) = \frac{1}{x}\)
      1. No: \(2\arcsin(1) = 2\cdot\frac{\pi}{2} = \pi\), but \(\arcsin(2)\) is not defined.
      2. No: \(2\arccos(1) = 2\cdot0 = 0\), but \(\arccos(2)\) is not defined.
    6. Let \(\alpha\) represent the angle of declination from the viewer to the bottom of the whiteboard, and \(\beta\) the angle of elevation to the top:
      A thick black horizontal line is at the bottom of the image. At the far left is a green-shaded circle 4 ft. above the horizontal, connected to the horizontal with a vertical dashed-black line segment. At the right end of the horizontal line is a perpendicular vertical line segment of hieght 3 units with a thin red rectangle atop it. A dashed-black horizontal line segment connects the green circle with the red rectangle at a point 1 unit aove the bottom of the rectangle and 3 units below the top. Two more dashed-black line segments connect the green circle with the top and bottom of the rectangle, the top segment making an angle of beta with the horizontal and the bottom one an angle of alpha. A double arrow indicate the horizontal distance between the green circle and the red rectangle is 15 ft.
      1. \(\displaystyle \alpha + \beta = \arctan\left(\frac{1}{15}\right) + \arctan\left(\frac{3}{15}\right) \approx 0.264\), or about \(15.12^{\circ}\).
      2. Replacing \(15\) with \(x\):\[\alpha + \beta = \arctan\left(\frac{1}{x}\right) + \arctan\left(\frac{3}{x}\right)\nonumber\]
    7. The graphs appear below:
      On the left is red graph of y=arcsin(x/2) and on the right is a red graph of y=arctan(x/2).
    8. Differentiating implicitly, \(\displaystyle \frac{dh}{dt} = 20\cos(\theta)\cdot\frac{d\theta}{dt}\), so \(\displaystyle \frac{dh}{dt}\bigg|_{\theta=1.3} = 20\cos(1.3)\cdot 12 \approx 64.20\).
    9. Differentiating implicitly, \(\displaystyle -\sin(\theta)\cdot\frac{d\theta}{dt} = 3\cdot \frac{dh}{dt}\), so \(\displaystyle \frac{dh}{dt}\bigg|_{\theta=1.3} = -\frac13\sin(1.3)\cdot 12 \approx -3.85\).
    10. Differentiating implicitly, \(\displaystyle \cos(\theta)\cdot\frac{d\theta}{dt} = \frac{1}{38}\cdot \frac{dh}{dt}\), so \(\displaystyle \frac{d\theta}{dt}\bigg|_{\theta=1.3} = \frac{4}{38}\sec(1.3)\approx 0.394\).
    11. Differentiating implicitly, \(\displaystyle -\sin(\theta)\cdot\frac{d\theta}{dt} = 7\cdot \frac{dh}{dt}\), so \(\displaystyle \frac{d\theta}{dt}\bigg|_{\theta=1.3} = -28\csc(1.3)\cdot 12 \approx -29.059\).
    12. If \(h\) is the height of the rocket, then \(\displaystyle \tan(\theta) = \frac{h}{4000} \Rightarrow h = 4000\tan(\theta) \Rightarrow \frac{dh}{dt}  = 4000\sec^2(\theta)\cdot\frac{d\theta}{dt}\), so \(\displaystyle \frac{dh}{dt}\bigg|_{\theta=\frac{\pi}{3}} = 4000\cdot 4 \cdot\frac{\pi}{12} \approx 4189\) ft/sec.
      1. \(\displaystyle \alpha = \arcsin\left(\frac{A}{C}\right)\)
      2. \(\displaystyle \beta = \arccos\left(\frac{A}{C}\right)\)
      3. \(\displaystyle \arcsin\left(\frac{A}{C}\right)+\arccos\left(\frac{A}{C}\right) = \alpha + \beta = \frac{\pi}{2}\)
      1. \(\displaystyle \alpha = \mbox{arcsec}\left(\frac{C}{B}\right)\)
      2. \(\displaystyle \beta = \mbox{arccsc}\left(\frac{C}{B}\right)\)
      3. \(\displaystyle \mbox{arcsec}\left(\frac{C}{B}\right)+\mbox{arccsc}\left(\frac{C}{B}\right) = \alpha + \beta = \frac{\pi}{2}\)
      1. \(\displaystyle \frac{5}{12}\)
      2. \(\displaystyle \frac{12}{5}\)
      1. \(\displaystyle \frac{12}{13}\)
      2. \(\displaystyle \frac{13}{12}\)
    13. \(1.231\)
    14. \(\pi\)
    15. \(\displaystyle \frac{2\pi}{3}\)
    16. \(\displaystyle \frac{\pi}{4}\)
    17. \(0.322\)
      1. \(\displaystyle \frac{7}{25}\)
      2. \(\displaystyle \frac{24}{25}\)
      3. \(\displaystyle \arcsin\left(\frac{7}{25}\right) = \arccos\left(\frac{24}{25}\right)\)
    18. If \(x\neq 0\) then:\[\sin\left(\mbox{arccsc}\left(x\right)\right) = \frac{1}{\csc\left(\mbox{arccsc}\left(x\right)\right)} = \frac{1}{x}\nonumber\]Applying \(\arcsin\) to each side yields the result.
    19. We know that \(\tan\left(\mbox{arcsec}(x)\right) = \sqrt{x^2-1}\) from Example 5, so \(\mbox{arcsec}(x) = \arctan\left(\sqrt{x^2-1}\right)\).

    Section 7.4

    1. \(\displaystyle \frac{1}{\sqrt{1-\left(3x\right)^2}} \cdot 3 = \frac{3}{\sqrt{1-9x^2}}\)
    2. \(\displaystyle \frac{1}{1+\left(x+5\right)^2} = \frac{1}{x^2+10x+26}\)
    3. \(\displaystyle \frac{1}{1+\left(\sqrt{x}\right)^2} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}\left(1+x\right)}\)
    4. \(\displaystyle \frac{1}{\arctan(x)} \cdot \frac{1}{1+x^2}\)
    5. \(\displaystyle 3\left(\mbox{arcsec}(x)\right)^2 \cdot \frac{1}{\left|x\right|\sqrt{x^2-1}}\)
    6. \(\displaystyle \frac{1}{1+\left(\ln(x)\right)^2} \cdot \frac{1}{x}\)
    7. \(\displaystyle e^x \cdot \frac{2}{1+4x^2} + \arctan(2x)\cdot e^x\)
    8. \(\displaystyle \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0\)
    9. \(\displaystyle \frac{1}{2\sqrt{\arcsin(x)}} \cdot \frac{1}{\sqrt{1-x^2}}\)
    10. \(\displaystyle \cos\left(3+\arctan(x)\right)\cdot \frac{1}{1+x^2}\)
    11. \(\displaystyle \arctan\left(\frac{1}{x}\right) - \frac{x}{x^2+1}\)
      1. Use the result of Section 7.3 Problem 21:\[\theta = \arctan\left(\frac{1}{x}\right) + \arctan\left(\frac{3}{x}\right)\nonumber\]
      2. Differentiating yields:\[\frac{d\theta}{dx} = \frac{-1}{x^2+1} - \frac{3}{x^2+9} = \frac{-4\left(x^2+3\right)}{(x^2+1)(x^2+9)} < 0\nonumber\]so there are no critical points. As \(x\to\infty\), \(\theta \to 0\) (a minimum), and as \(x\to 0\), \(\theta \to \pi\): the viewer's nose touches the whiteboard!
    12. With \(y = \arccos(x)\), \(\cos(y) = x\) so that:\[-\sin(y) \cdot \frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{-1}{\sin(y)}\nonumber\]The range of \(\arccos(y)\) is \(0 \leq y \leq \pi\), and on this interval \(\sin(y) \geq 0\), so:\[\cos^2(y) + \sin^2(y) = 1 \Rightarrow \sin(y) = \sqrt{1-\cos^2(y)} \Rightarrow \ \frac{dy}{dx} = \frac{-1}{\sqrt{1-\cos^2(y)}} = \frac{-1}{\sqrt{1-x^2}}\nonumber\]
    13. For \(\displaystyle 0 < x < \frac{\pi}{2}\): \(\displaystyle \arccos(x) +\arcsin(x) = \frac{\pi}{2}\)

    Section 7.5

    1. \(\displaystyle 7\cdot \int \frac{1}{\sqrt{3^2-x^2}} \, dx = 7\arcsin\left(\frac{x}{3}\right)+C\)
    2. \(\displaystyle 3\cdot \int_0^1 \frac{1}{5^2+x^2} \, dx = \left[\frac35\arctan\left(\frac{x}{5}\right)\right]_0^1 =\frac35\arctan\left(\frac15\right) \approx 0.1184\)
    3. \(\displaystyle 9\cdot \int \frac{1}{\sqrt{7^2-x^2}} \, dx = 9\arcsin\left(\frac{x}{7}\right)+C\)
    4. \(\displaystyle 3\cdot \int_6^{10} \frac{1}{x\sqrt{x^2-5^2}} \, dx = \left[\frac35\mbox{arcsec}\left(\frac{x}{5}\right)\right]_6^{10} = \frac35\left[\mbox{arcsec}\left(2\right)-\mbox{arcsec}\left(\frac{6}{5}\right)\right] \approx 0.2769\)
    5. With \(u = x-1 \Rightarrow du = dx\) the integral becomes:\[\int \frac{1}{1+u^2}\, du = \arctan(u)+C = \arctan(x-1)+C\nonumber\]
    6. With \(u = e^x \Rightarrow du = e^x\, dx\) the integral becomes:\[\int_{e^{-1}}^{e} \frac{1}{1+u^2}\, du = \arctan(e)-\arctan\left(e^{-1}\right) \approx 0.8658\nonumber\]
    7. With \(u = \sin(\theta) \Rightarrow du = \cos(\theta)\, d\theta\) this becomes: \begin{align*}\int \frac{1}{\sqrt{3^2-u^2}}\, du &= \arcsin\left(\frac{u}{3}\right) + C \\ &= \arcsin\left(\frac{\sin(\theta)}{3}\right)+C\end{align*}
    8. With \(u = 9+x^2 \Rightarrow du = 2x\, dx\) this becomes:\[\frac32\int u^{-\frac12}\, du = 3\sqrt{u}+C = 3\sqrt{9+x^2}+C\nonumber\]
    9. With \(u = x^2 \Rightarrow du = 2x\, dx\) the integral becomes:\[3\int \frac{1}{3^2+u^2}\, du = \arctan\left(\frac{u}{3}\right)+C = \arctan\left(\frac{x^2}{3}\right)+C\nonumber\]
    10. With \(u = 2x \Rightarrow du = 2\, dx\) the integral becomes:\[\frac12\int\frac{1}{1+u^2}\, du = \frac12\arctan(u)+C = \frac12\arctan(2x)+C\nonumber\]
    11. This is an improper integral:\[\lim_{M\to\infty}\int_0^M \frac{1}{\left(\sqrt{3}\right)^2+x^2}\, dx = \lim_{M\to\infty} \left[\frac{1}{\sqrt{3}}\arctan\left(\frac{x}{\sqrt{3}}\right)\right]_0^M = \lim_{M\to\infty}\, \frac{1}{\sqrt{3}}\arctan\left(\frac{M}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}}\nonumber\]
    12. This is an improper integral:\[\lim_{b\to\sqrt{7}^{-}}\int_0^b \frac{1}{\sqrt{\left(\sqrt{7}\right)^2-x^2}}\, dx = \lim_{b\to\sqrt{7}^{-}}\left[\arcsin\left(\frac{x}{\sqrt{7}}\right)\right]_0^b =\lim_{b\to\sqrt{7}^{-}}\, \arcsin\left(\frac{b}{\sqrt{7}}\right) = \arcsin(1) = \frac{\pi}{2}\nonumber\]
    13. Separating variables:\[\int \frac{1}{y}\, dy = \int \frac{1}{\sqrt{1-x^2}}\, dx \Rightarrow \ln\left(\left|y\right|\right) = \arcsin(x)+C\nonumber\]Using \(y(0) = e\):\[\ln(e)=\arcsin(0)+ C \Rightarrow 1 = 0+C \Rightarrow C = 1\nonumber\]Solving for \(y\):\[\ln\left(\left|y\right|\right)=\arcsin(x)+1 \Rightarrow |y| = e^{\arcsin(x)+1}\nonumber\]so \(\displaystyle y = e^{\arcsin(x)+1}\) (because \(y(0)=e>0\)).
    14. Separating variables:\[\int \frac{1}{y^2}\, dy = \int \frac{1}{3^2+x^2}\, dx \Rightarrow -\frac{1}{y} = \frac13 \arctan\left(\frac{x}{3}\right)+C\nonumber\]Using \(y(1)=2\):\[-\frac12 = \frac13\arctan\left(\frac13\right)+C \Rightarrow C = -\frac12-\frac13\arctan\left(\frac13\right)\nonumber\]Solving for \(y\) yields:\[y = \frac{-1}{\frac13 \arctan\left(\frac{x}{3}\right) -\frac12 -\frac13\arctan\left(\frac13\right)}\nonumber\]
    15. Rewrite the integral as:\[\int \frac{4\cdot 2x}{3^2+x^2}\, dx + \int \frac{5}{3^2+x^2}\, dx\nonumber\]and integrate each term separately to get:\[4\ln\left(x^2+9\right)+\frac53\arctan\left(\frac{x}{3}\right)+C\nonumber\]
    16. Rewrite the integral as:\[\frac72 \int \frac{2x}{\left(\sqrt{10}\right)^2+x^2}\, dx + 3 \int \frac{1}{\left(\sqrt{10}\right)^2+x^2}\, dx\nonumber\]and integrate each term separately to get:\[\frac72\ln\left(x^2+10\right)+\frac{3}{\sqrt{10}}\arctan\left(\frac{x}{\sqrt{10}}\right)+C\nonumber\]
    17. Completing the square in the denominator, the integral becomes:\[8\int \frac{1}{1+(x+3)^2}\, dx = 8\arctan(x+3)+C\nonumber\]
    18. Rewrite the integral as:\[\int\frac{2(2x+6)}{x^2+6x+10}\, dx + \int \frac{8}{1+(x+3)^2}\, dx\nonumber\]and integrate each term separately to get:\[2\ln(x^2+6x+10)+8\arctan(x+3)+C\nonumber\]
    19. Use \(u = x^2+4x+5 \Rightarrow du = (2x+4)\, dx\):\[\int\frac{6(2x+4)}{x^2+4x+5}\, dx =6\int \frac{1}{u}\, du = 6\ln\left(\left|u\right|\right)+C\nonumber\]and resubstitute to get \(\displaystyle 6\ln(x^2+4x+5)+C\)
    20. Rewrite the integral as:\[\int\frac{3(2x+4)}{x^2+4x+20}\, dx + \int \frac{3}{4^2+(x+2)^2}\, dx\nonumber\]and integrate each term separately to get:\[3\ln(x^2+4x+20)+\frac34\arctan\left(\frac{x+2}{4}\right)+C\nonumber\]

    7.A: Answers is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?