2.9: Chapter 2 Review Exercises
- Page ID
- 166219
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises 1 - 4
True or False? Justify your answer with a proof or a counterexample.
1. \(\displaystyle ∫_a^b∫_c^d f(x,y) \, dy \, dx = ∫_c^d∫_a^b f(x,y) \, dy \, dx\)
2. Fubini’s theorem can be extended to three dimensions, as long as \(f\) is continuous in all variables.
- Answer
- True
3. The integral \(\displaystyle ∫_0^{2π}∫_0^1∫_r^1 \,dz \, dr \, dθ\) represents the volume of a right cone.
4. The Jacobian of the transformation for \(x=u^2−2v, \, y=3v−2uv\) is given by \(−4u^2+6u+4v.\)
- Answer
- False
Exercises 5 - 13
Evaluate the following integrals.
5. \(\displaystyle \iint_R (5x^3y^2−y^2) \, dA,\) where \(R=\big\{(x,y) \,|\, 0≤x≤2,\, 1≤y≤4\big\}\)
6. \(\displaystyle \iint_D \dfrac{y}{3x^2+1} \, dA,\) where \( D=\big\{(x,y) \,|\, 0≤x≤1, \, −x≤y≤x\big\}\)
- Answer
- \(0\)
7. \(\displaystyle \iint_D \sin(x^2+y^2) \, dA\) where \(D\) is a disk of radius \(2\) centered at the origin.
8. \(\displaystyle \int_0^1\int_y^1 xye^{x^2}\,dx \, dy\)
- Answer
- \(\frac{1}{4}\)
9. \(\displaystyle \int_{−1}^1\int_0^z\int_0^{x−z} 6 \, dy \, dx\, dz\)
10. \(\displaystyle \iiint_R 3y \, dV,\) where \(R=\big\{(x,y,z) \,|\, 0≤x≤1, \, 0≤y≤x, \, 0≤z≤9−y^2\big\}\)
- Answer
- \(1.475\)
11. \(\displaystyle \int_0^2\int_0^{2π}\int_r^1 r \, dz \, dθ \, dr\)
12. \(\displaystyle \int_0^{2π}\int_0^{π/2}\int_1^3 ρ^2\sin(φ) \, dρ \, dφ \, dθ\)
- Answer
- \(\frac{52\pi}{3}\)
13. \(\displaystyle \int_0^1\int_{−\sqrt{1−x^2}}^{\sqrt{1−x^2}}\int_{−\sqrt{1−x^2−y^2}}^{\sqrt{1−x^2−y^2}} \, dz \, dy \, dx\)
Exercises 14 - 17
For the following problems, find the specified area or volume.
14. The area of region enclosed by one petal of \(r=\cos(4θ).\)
- Answer
- \(\frac{\pi}{16} \text{ units}^3\)
15. The volume of the solid that lies between the paraboloid \(z=2x^2+2y^2\) and the plane \(z=8.\)
16. The volume of the solid bounded by the cylinder \(x^2+y^2=16\) and from \(z=1\) to \(z+x=2.\)
- Answer
- \(93.291 \text{ units}^3\)
17. The volume of the intersection between two spheres of radius \(1,\) the top whose center is \((0,\,0,\,0.25)\) and the bottom, which is centered at \((0,\,0,\,0).\)
Exercises 18 - 21
For the following problems, find the center of mass of the region.
18. \(ρ(x,y)=xy\) on the circle with radius \(1\) in the first quadrant only.
- Answer
- \( \left( \frac{8}{15}, \, \frac{8}{15} \right) \)
19. \(ρ(x,y)=(y+1)\sqrt{x}\) in the region bounded by \(y=e^x, \, y=0,\) and \(x=1.\)
20. \(ρ(x,y,z)=z\) on the inverted cone with radius \(2\) and height \(2.\)
- Answer
- \( \left( 0, \, 0, \, \frac{8}{5} \right) \)
21. The volume an ice cream cone that is given by the solid above \(z=\sqrt{x^2+y^2}\) and below \(z^2+x^2+y^2=z.\)
Exercises 22 - 23
The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski resort. The shape of Mount Holly can be approximated by a right circular cone of height 1100 ft and radius 6000 ft.
22. If the compacted trash used to build Mount Holly on average has a density \(400\text{ lb/ft}^3,\) find the amount of work required to build the mountain.
- Answer
- \(1.452\pi \times 10^{15}\) ft-lb
23. In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the above trash. Consider a density function with respect to height: the density at the top of the mountain is still density \(400\text{ lb/ft}^3,\) and the density increases. Every 100 feet deeper, the density doubles. What is the total weight of Mount Holly?
Exercises 24 - 25
The following problems consider the temperature and density of Earth’s layers.
24. The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree 3 to the temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at 0 in the inner core and increase outward toward the surface)
| Layer | Depth from center (km) | Temperature °C |
|---|---|---|
| Rocky Crust | 0 to 40 | 0 |
| Upper Mantle | 40 to 150 | 870 |
| Mantle | 400 to 650 | 870 |
| Inner Mantel | 650 to 2700 | 870 |
| Molten Outer Core | 2890 to 5150 | 4300 |
| Inner Core | 5150 to 6378 | 7200 |
- Answer
- \(y=−1.238×10^{−7}x^3+0.001196x^2−3.666x+7208\);
The average temperature is approximately 2800 °C.
25. The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit quadratic equation to the density. Using this equation, find the total mass of Earth.
| Layer | Depth from center (km) | Density (\(\text{g/cm}^3\)) |
|---|---|---|
| Inner Core | 0 | 12.95 |
| Outer Core | 1228 | 11.05 |
| Mantle | 3488 | 5.00 |
| Upper Mantle | 6338 | 3.90 |
| Crust | 6378 | 2.55 |
Exercises 26 - 27
The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for calculating volume using centroids. Assuming a region \(R\), when you revolve around the \(x\)-axis the volume is given by \(V_x=2πA\overline{y},\) and when you revolve around the \(y\)-axis the volume is given by \(V_y=2πA\overline{x},\) where \(A\) is the area of \(R\). Consider the region bounded by \(x^2+y^2=1\) and above \(y=x+1\).
26. Find the volume when you revolve the region around the \(x\)-axis.
- Answer
- \(\frac{\pi}{3} \text{ units}^3\)
27. Find the volume when you revolve the region around the \(y\)-axis.


