6.6: Krull-Schmidt theorem
- Page ID
- 180069
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A group \(G\) is indecomposable if \(G\neq1\) and \(G\) is not isomorphic to a direct product of two nontrivial groups, i.e., if
\[G\approx H\times H^{\prime}\implies H=1\text{ or }H^{\prime}=1. \nonumber \]
[ns28](a) A simple group is indecomposable, but an indecomposable group need not be simple: it may have a normal subgroup. For example, \(S_{3}\) is indecomposable but has \(C_{3}\) as a normal subgroup.
(b) A finite commutative group is indecomposable if and only if it is cyclic of prime-power order.
Of course, this is obvious from the classification, but it is not difficult to prove it directly. Let \(G\) be cyclic of order \(p^{n}\), and suppose that \(G\approx H\times H^{\prime}\). Then \(H\) and \(H^{\prime}\) must be \(p\)-groups, and they can’t both be killed by \(p^{m}\), \(m<n\). It follows that one must be cyclic of order \(p^{n}\), and that the other is trivial. Conversely, suppose that \(G\) is commutative and indecomposable. Since every finite commutative group is (obviously) a direct product of \(p\)-groups with \(p\) running over the primes, \(G\) is a \(p\)-group. If \(g\) is an element of \(G\) of highest order, one shows that \(\langle g\rangle\) is a direct factor of \(G\), \(G\approx\langle g\rangle\times H\), which is a contradiction.
(c) Every finite group can be written as a direct product of indecomposable groups (obviously).
[Krull-Schmidt][ns29]25 Suppose that \(G\) is a direct product of indecomposable subgroups \(G_{1}% ,\ldots,G_{s}\) and of indecomposable subgroups \(H_{1},\ldots,H_{t}\):
\[G\simeq G_{1}\times\cdots\times G_{s},\quad G\simeq H_{1}\times\cdots\times H_{t}. \nonumber \]
Then \(s=t\), and there is a re-indexing such that \(G_{i}\approx H_{i}\). Moreover, given \(r\), we can arrange the numbering so that
\[G=G_{1}\times\cdots\times G_{r}\times H_{r+1}\times\cdots\times H_{t}. \nonumber \]
See , 6.36.
[ns30]Let \(G=\mathbb{F}_{p}\times\mathbb{F}_{p}\), and think of it as a two-dimensional vector space over \(\mathbb{F}_{p}\). Let
\[G_{1}=\langle(1,0)\rangle,\quad G_{2}=\langle(0,1)\rangle;\quad H_{1}% =\langle(1,1)\rangle,\quad H_{2}=\langle(1,-1)\rangle. \nonumber \]
Then \(G=G_{1}\times G_{2}\), \(G=H_{1}\times H_{2}\), \(G=G_{1}\times H_{2}\).
[ns31](a) The Krull-Schmidt theorem holds also for an infinite group provided it satisfies both chain conditions on subgroups, i.e., ascending and descending sequences of subgroups of \(G\) become stationary.
(b) The Krull-Schmidt theorem also holds for groups with operators. For example, let \(\Aut(G)\) operate on \(G\); then the subgroups in the statement of the theorem will all be characteristic.
(c) When applied to a finite abelian group, the theorem shows that the groups \(C_{m_{i}}\) in a decomposition \(G=C_{m_{1}}\times...\times C_{m_{r}}\) with each \(m_{i}\) a prime power are uniquely determined up to isomorphism (and ordering).