$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 8-6. Parametric Equations

Parametric Equations
In this section, you will:
• Parameterize a curve.
• Eliminate the parameter.
• Find a rectangular equation for a curve defined parametrically.
• Find parametric equations for curves defined by rectangular equations.

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in [link]. At any moment, the moon is located at a particular spot relative to the planet. But how do we write and solve the equation for the position of the moon when the distance from the planet, the speed of the moon’s orbit around the planet, and the speed of rotation around the sun are all unknowns? We can solve only for one variable at a time.

<figure class="small" id="Figure_08_06_001" style="color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px;"></figure>

In this section, we will consider sets of equations given by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )  and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )  where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi></mrow></annotation-xml></semantics>[/itex] is the independent variable of time. We can use these parametric equations in a number of applications when we are looking for not only a particular position but also the direction of the movement. As we trace out successive values of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]the orientation of the curve becomes clear. This is one of the primary advantages of using parametric equations: we are able to trace the movement of an object along a path according to time. We begin this section with a look at the basic components of parametric equations and what it means to parameterize a curve. Then we will learn how to eliminate the parameter, translate the equations of a curve defined parametrically into rectangular equations, and find the parametric equations for curves defined by rectangular equations.

# Parameterizing a Curve

When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of time, the position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] vary over time and so are functions of time. For this reason, we add another variable, the parameter, upon which both<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are dependent functions. In the example in the section opener, the parameter is time,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]position of the moon at time,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is represented as the function<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]position of the moon at time,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is represented as the function<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Together,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] are called parametric equations, and generate an ordered pair<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t), y(t) ). Parametric equations primarily describe motion and direction.

When we parameterize a curve, we are translating a single equation in two variables, such as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo> ,</mo></mrow></annotation-xml></semantics>[/itex]into an equivalent pair of equations in three variables,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]One of the reasons we parameterize a curve is because the parametric equations yield more information: specifically, the direction of the object’s motion over time.

When we graph parametric equations, we can observe the individual behaviors of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]There are a number of shapes that cannot be represented in the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]meaning that they are not functions. For example, consider the graph of a circle, given as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] r 2 = x 2 + y 2 . Solving for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]gives<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mo>±</mo><msqrt/></mrow></annotation-xml></semantics>[/itex] r 2 − x 2 , or two equations:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] y 1 = r 2 − x 2  and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] y 2 =− r 2 − x 2 . If we graph<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] y 1  and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] y 2  together, the graph will not pass the vertical line test, as shown in [link]. Thus, the equation for the graph of a circle is not a function.

<figure class="small" id="Figure_08_06_002"></figure>

However, if we were to graph each equation on its own, each one would pass the vertical line test and therefore would represent a function. In some instances, the concept of breaking up the equation for a circle into two functions is similar to the concept of creating parametric equations, as we use two functions to produce a non-function. This will become clearer as we move forward.

Parametric Equations

Suppose<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is a number on an interval,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>I</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The set of ordered pairs,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t),  y(t) ), where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo></mrow></annotation-xml></semantics>[/itex]forms a plane curve based on the parameter<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The equations<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are the parametric equations.

Parameterizing a Curve

Parameterize the curve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 −1 letting<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Graph both equations.

If<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t, then to find<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ) we replace the variable<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]with the expression given in<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ). In other words,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )= t 2 −1. Make a table of values similar to [link], and sketch the graph.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>4</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>4</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −4 )= ( −4 ) 2 −1=15
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −3 )= ( −3 ) 2 −1=8
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −2 )= ( −2 ) 2 −1=3
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −1 )= ( −1 ) 2 −1=0
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>0</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>0</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 0 )= ( 0 ) 2 −1=−1
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>1</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>1</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1 )= ( 1 ) 2 −1=0
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>2</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>2</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 2 )= ( 2 ) 2 −1=3
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>3</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>3</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3 )= ( 3 ) 2 −1=8
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>4</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>4</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 4 )= ( 4 ) 2 −1=15

See the graphs in [link]. It may be helpful to use the TRACE feature of a graphing calculator to see how the points are generated as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]increases.

<figure class="medium" id="Figure_08_06_015"> <figcaption>(a) Parametric<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )= t 2 −1 (b) Rectangular<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 −1</figcaption> </figure>
Analysis

The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 −1.

Construct a table of values and plot the parametric equations:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t−3,  y( t )=2t+4;   −1≤t≤2.

 t[/itex] x([/itex] t ) y([/itex] t ) 1[/itex] 4[/itex] 2[/itex] 0[/itex] 3[/itex] 4[/itex] 1[/itex] 2[/itex] 6[/itex] 2[/itex] 1[/itex] 8[/itex]
Finding a Pair of Parametric Equations

Find a pair of parametric equations that models the graph of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 , using the parameter<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t. Plot some points and sketch the graph.

If<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and we substitute<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] t  for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]into the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation, then<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=1− t 2 . Our pair of parametric equations is

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi></mtd></mtr></mtable></annotation-xml></semantics>[/itex] y(t)=1− t 2

To graph the equations, first we construct a table of values like that in [link]. We can choose values around<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mo>−</mo><mn>3</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>3.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The values in the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]column will be the same as those in the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]column because<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Calculate values for the column<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] t 2
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −3 )=1− ( −3 ) 2 =−8
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −2 )=1− ( −2 ) 2 =−3
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −1 )=1− ( −1 ) 2 =0
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>0</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>0</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mn>0</mn><mo>=</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>1</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>1</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] (1) 2 =0
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>2</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>2</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] (2) 2 =−3
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>3</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>3</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] (3) 2 =−8

The graph of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mn>1</mn><mo>−</mo><msup/></mrow></annotation-xml></semantics>[/itex] t 2  is a parabola facing downward, as shown in [link]. We have mapped the curve over the interval<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">[</mo><mn>−3</mn><mo>,</mo><mtext> </mtext><mn>3</mn><mo stretchy="false">]</mo><mo>,</mo></mrow></annotation-xml></semantics>[/itex] shown as a solid line with arrows indicating the orientation of the curve according to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Orientation refers to the path traced along the curve in terms of increasing values of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]As this parabola is symmetric with respect to the line<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]the values of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are reflected across the y-axis.

<figure class="small" id="Figure_08_06_007"></figure>

Parameterize the curve given by<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] y 3 −2y.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t 3 −2t y(t)=t

Finding Parametric Equations That Model Given Criteria

An object travels at a steady rate along a straight path <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−5</mn><mo>,</mo><mtext> </mtext><mn>3</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mtext> </mtext><mn>−1</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in the same plane in four seconds. The coordinates are measured in meters. Find parametric equations for the position of the object.

The parametric equations are simple linear expressions, but we need to view this problem in a step-by-step fashion. The x-value of the object starts at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>−5</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]meters and goes to 3 meters. This means the distance x has changed by 8 meters in 4 seconds, which is a rate of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 8 m 4 s , or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mtext> </mtext><mtext>m</mtext><mo>/</mo><mtext>s</mtext><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]We can write the x-coordinate as a linear function with respect to time as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>5.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]In the linear function template<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo>,</mo><mn>2</mn><mi>t</mi><mo>=</mo><mi>m</mi><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>−</mo><mn>5</mn><mo>=</mo><mi>b</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

Similarly, the y-value of the object starts at 3 and goes to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>−1</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]which is a change in the distance y of −4 meters in 4 seconds, which is a rate of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] −4 m 4 s , or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>−</mo><mn>1</mn><mtext>m</mtext><mo>/</mo><mtext>s</mtext><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]We can also write the y-coordinate as the linear function<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>t</mi><mo>+</mo><mn>3.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Together, these are the parametric equations for the position of the object, where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] are expressed in meters and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] represents time:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>5</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] y(t)=−t+3

Using these equations, we can build a table of values for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi></mrow></annotation-xml></semantics>[/itex] (see [link]). In this example, we limited values of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to non-negative numbers. In general, any value of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]can be used.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>5</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>t</mi><mo>+</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>0</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>−</mo><mn>5</mn><mo>=</mo><mo>−</mo><mn>5</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo>=</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>1</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>−</mo><mn>5</mn><mo>=</mo><mo>−</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo>=</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>2</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>−</mo><mn>5</mn><mo>=</mo><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo>=</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>3</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>−</mo><mn>5</mn><mo>=</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow></annotation-xml></semantics>[/itex]
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mn>4</mn></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo><mo>−</mo><mn>5</mn><mo>=</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo>=</mo><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]

From this table, we can create three graphs, as shown in [link].

<figure id="Figure_08_06_003"> <figcaption>(a) A graph of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]vs.<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]representing the horizontal position over time. (b) A graph of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi></mrow></annotation-xml></semantics>[/itex] vs. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]representing the vertical position over time. (c) A graph of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] vs. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]representing the position of the object in the plane at time<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]</figcaption> </figure>
Analysis

Again, we see that, in [link](c), when the parameter represents time, we can indicate the movement of the object along the path with arrows.

# Eliminating the Parameter

In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the equation involves only two variables, such as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Eliminating the parameter is a method that may make graphing some curves easier. However, if we are concerned with the mapping of the equation according to time, then it will be necessary to indicate the orientation of the curve as well. There are various methods for eliminating the parameter<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]from a set of parametric equations; not every method works for every type of equation. Here we will review the methods for the most common types of equations.

## Eliminating the Parameter from Polynomial, Exponential, and Logarithmic Equations

For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose the equation that is most easily manipulated and solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]We substitute the resulting expression for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] into the second equation. This gives one equation in<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

Eliminating the Parameter in Polynomials

Given<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] t 2 +1 and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mo>+</mo><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]eliminate the parameter, and write the parametric equations as a Cartesian equation.

We will begin with the equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]because the linear equation is easier to solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>y</mi><mo>=</mo><mn>2</mn><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] y−2=t

Next, substitute<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>−</mo><mn>2</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo>=</mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] t 2 +1 x= (y−2) 2 +1 Substitute the expression for t into x. x= y 2 −4y+4+1 x= y 2 −4y+5 x= y 2 −4y+5

The Cartesian form is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] y 2 −4y+5.

Analysis

This is an equation for a parabola in which, in rectangular terms,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is dependent on<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]From the curve’s vertex at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1,2 ), the graph sweeps out to the right. See [link]. In this section, we consider sets of equations given by the functions<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ) and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ), where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the independent variable of time. Notice, both<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are functions of time; so in general<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is not a function of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<figure id="Figure_08_06_008"></figure>

Given the equations below, eliminate the parameter and write as a rectangular equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]as a function

of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><msup/></mrow></mtd></mtr></mtable></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t 2 +6 y(t)=5−t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mn>5</mn><mo>−</mo><msqrt/></mrow></annotation-xml></semantics>[/itex] 1 2 x−3

Eliminating the Parameter in Exponential Equations

Eliminate the parameter and write as a Cartesian equation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] e −t   and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>3</mn><msup/></mrow></annotation-xml></semantics>[/itex] e t ,  t>0.

Isolate<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e t .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mtext> </mtext><mi>x</mi><mo>=</mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] e −t e t = 1 x

Substitute the expression into<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>y</mi><mo>=</mo><mn>3</mn><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] e t y=3( 1 x ) y= 3 x

The Cartesian form is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 3 x .

Analysis

The graph of the parametric equation is shown in [link](a). The domain is restricted to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>></mo><mn>0.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The Cartesian equation,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 3 x  is shown in [link](b) and has only one restriction on the domain,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>≠</mo><mn>0.</mn></mrow></annotation-xml></semantics>[/itex]

<figure id="Figure_08_06_009"></figure>
Eliminating the Parameter in Logarithmic Equations

Eliminate the parameter and write as a Cartesian equation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msqrt/></mrow></annotation-xml></semantics>[/itex] t +2 and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>log</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

Solve the first equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>           </mtext><mi>x</mi><mo>=</mo><msqrt/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] t +2     x−2= t (x−2) 2 =t Square both sides.

Then, substitute the expression for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi></mrow></annotation-xml></semantics>[/itex] into the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi></mrow></annotation-xml></semantics>[/itex] equation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>y</mi><mo>=</mo><mi>log</mi><mrow><mo>(</mo></mrow></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t ) y=log ( x−2 ) 2

The Cartesian form is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>log</mi><msup/></mrow></annotation-xml></semantics>[/itex] ( x−2 ) 2 .

Analysis

To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains. The parametric equations restrict the domain on<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><msqrt/></mrow></annotation-xml></semantics>[/itex] t +2 to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>></mo><mn>0</mn><mo>;</mo></mrow></annotation-xml></semantics>[/itex] we restrict the domain on<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>></mo><mn>2.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The domain for the parametric equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>log</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is restricted to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>></mo><mn>0</mn><mo>;</mo></mrow></annotation-xml></semantics>[/itex] we limit the domain on<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>log</mi><msup/></mrow></annotation-xml></semantics>[/itex] ( x−2 ) 2  to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>></mo><mn>2.</mn></mrow></annotation-xml></semantics>[/itex]

Eliminate the parameter and write as a rectangular equation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mrow></mtd></mtr></mtable></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t 2 y(t)=ln t        t>0

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mi>ln</mi><msqrt/></mrow></annotation-xml></semantics>[/itex] x

## Eliminating the Parameter from Trigonometric Equations

Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of the familiar trigonometric identities and the Pythagorean Theorem.

First, we use the identities:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>x</mi><mrow><mo>(</mo></mrow></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t )=acos t y( t )=bsin t

Solving for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>cos</mi><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>sin</mi><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]we have

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mfrac><mi>x</mi></mfrac></mtd></mtr></mtable></annotation-xml></semantics>[/itex] a =cos t y b =sin t

Then, use the Pythagorean Theorem:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mrow><mi>cos</mi></mrow></msup></mrow></annotation-xml></semantics>[/itex] 2 t+ sin 2 t=1

Substituting gives

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mrow><mi>cos</mi></mrow></msup></mrow></annotation-xml></semantics>[/itex] 2 t+ sin 2 t= ( x a ) 2 + ( y b ) 2 =1
Eliminating the Parameter from a Pair of Trigonometric Parametric Equations

Eliminate the parameter from the given pair of trigonometric equations where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and sketch the graph.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>4</mn><mi>cos</mi><mtext> </mtext><mi>t</mi></mtd></mtr></mtable></annotation-xml></semantics>[/itex] y(t)=3sin t

Solving for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>cos</mi><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>sin</mi><mtext> </mtext><mi>t</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] we have

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>4</mn><mi>cos</mi><mtext> </mtext><mi>t</mi></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] x 4 =cos t  y=3sin t y 3 =sin t

Next, use the Pythagorean identity and make the substitutions.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="right"><mtr columnalign="right"><mtd columnalign="right"><mrow><msup><mrow><mi>cos</mi></mrow></msup></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 2 t+ sin 2 t=1 ( x 4 ) 2 + ( y 3 ) 2 =1 x 2 16 + y 2 9 =1

The graph for the equation is shown in [link].

<figure class="small" id="Figure_08_06_011"></figure>
Analysis

Applying the general equations for conic sections (introduced in Analytic Geometry, we can identify<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] x 2 16 + y 2 9 =1 as an ellipse centered at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 0,0 ). Notice that when<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]the coordinates are<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 4,0 ), and when<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] π 2  the coordinates are<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 0,3 ). This shows the orientation of the curve with increasing values of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

Eliminate the parameter from the given pair of parametric equations and write as a Cartesian equation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>cos</mi><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>3</mn><mi>sin</mi><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><msup><mi>x</mi></msup></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2 4 + y 2 9 =1

# Finding Cartesian Equations from Curves Defined Parametrically

When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are essentially “eliminating the parameter.” However, there are various methods we can use to rewrite a set of parametric equations as a Cartesian equation. The simplest method is to set one equation equal to the parameter, such as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t. In this case, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ) can be any expression. For example, consider the following pair of equations.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>x</mi><mrow><mo>(</mo></mrow></mtd></mtr></mtable></annotation-xml></semantics>[/itex] t )=t y( t )= t 2 −3

Rewriting this set of parametric equations is a matter of substituting<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Thus, the Cartesian equation is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 −3.

Finding a Cartesian Equation Using Alternate Methods

Use two different methods to find the Cartesian equation equivalent to the given set of parametric equations.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>3</mn><mi>t</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable></mtd></mtr></mtable></annotation-xml></semantics>[/itex] y(t)=t+1

Method 1. First, let’s solve the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Then we can substitute the result into the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi></mrow></annotation-xml></semantics>[/itex] equation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>       </mtext><mi>x</mi><mo>=</mo><mn>3</mn><mi>t</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]  x+2=3t x+2 3 =t

Now substitute the expression for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]into the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>y</mi><mo>=</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] y=( x+2 3 )+1 y= x 3 + 2 3 +1 y= 1 3 x+ 5 3

Method 2. Solve the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and substitute this expression in the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>      </mtext><mi>y</mi><mo>=</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] y−1=t

Make the substitution and then solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>       </mtext><mi>x</mi><mo>=</mo><mn>3</mn><mo stretchy="false">(</mo><mi>y</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]        x=3y−3−2        x=3y−5  x+5=3y x+5 3 =y        y= 1 3 x+ 5 3

Write the given parametric equations as a Cartesian equation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] t 3   and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] t 6 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2

# Finding Parametric Equations for Curves Defined by Rectangular Equations

Although we have just shown that there is only one way to interpret a set of parametric equations as a rectangular equation, there are multiple ways to interpret a rectangular equation as a set of parametric equations. Any strategy we may use to find the parametric equations is valid if it produces equivalency. In other words, if we choose an expression to represent<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and then substitute it into the<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equation, and it produces the same graph over the same domain as the rectangular equation, then the set of parametric equations is valid. If the domain becomes restricted in the set of parametric equations, and the function does not allow the same values for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]as the domain of the rectangular equation, then the graphs will be different.

Finding a Set of Parametric Equations for Curves Defined by Rectangular Equations

Find a set of equivalent parametric equations for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] ( x+3 ) 2 +1.

An obvious choice would be to let<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t. Then<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )= ( t+3 ) 2 +1. But let’s try something more interesting. What if we let<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mi>t</mi><mo>+</mo><mn>3</mn><mo>?</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Then we have

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>y</mi><mo>=</mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] (x+3) 2 +1 y= ( (t+3)+3 ) 2 +1 y= (t+6) 2 +1

The set of parametric equations is

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow/></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi><mo>+</mo><mn>3</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] y(t)= (t+6) 2 +1

<figure class="medium" id="Figure_08_06_012"></figure>

Access these online resources for additional instruction and practice with parametric equations.

# Key Concepts

• Parameterizing a curve involves translating a rectangular equation in two variables,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]into two equations in three variables, x, y, and t. Often, more information is obtained from a set of parametric equations. See [link], [link], and[link].
• Sometimes equations are simpler to graph when written in rectangular form. By eliminating<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]an equation in<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the result.
• To eliminate<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]solve one of the equations for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and substitute the expression into the second equation. See [link],[link], [link], and [link].
• Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating the parameter. Solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in one of the equations, and substitute the expression into the second equation. See [link].
• There are an infinite number of ways to choose a set of parametric equations for a curve defined as a rectangular equation.
• Find an expression for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]such that the domain of the set of parametric equations remains the same as the original rectangular equation. See [link].

# Section Exercises

## Verbal

What is a system of parametric equations?

A pair of functions that is dependent on an external factor. The two functions are written in terms of the same parameter. For example,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ) and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t ).

Some examples of a third parameter are time, length, speed, and scale. Explain when time is used as a parameter.

Explain how to eliminate a parameter given a set of parametric equations.

Choose one equation to solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]substitute into the other equation and simplify.

What is a benefit of writing a system of parametric equations as a Cartesian equation?

What is a benefit of using parametric equations?

Some equations cannot be written as functions, like a circle. However, when written as two parametric equations, separately the equations are functions.

Why are there many sets of parametric equations to represent on Cartesian function?

## Algebraic

For the following exercises, eliminate the parameter<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to rewrite the parametric equation as a Cartesian equation.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=5−t y( t )=8−2t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mn>2</mn><mo>+</mo><mn>2</mn><mi>x</mi></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=6−3t y( t )=10−t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=2t+1 y( t )=3 t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mn>3</mn><msqrt/></mrow></annotation-xml></semantics>[/itex] x−1 2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=3t−1 y( t )=2 t 2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=2 e t y( t )=1−5t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>2</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 1−y 5  or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mn>1</mn><mo>−</mo><mn>5</mn><mi>l</mi><mi>n</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 2 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= e −2t y( t )=2 e −t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>{</mo><mtable columnalign="left"/></mrow></annotation-xml></semantics>[/itex] x(t)=4log(t) y(t)=3+2t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>4</mn><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] y−3 2 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>{</mo><mtable columnalign="left"/></mrow></annotation-xml></semantics>[/itex] x(t)=log(2t) y(t)= t−1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= t 3 −t y( t )=2t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] ( y 2 ) 3 − y 2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=t− t 4 y( t )=t+2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= e 2t y( t )= e 6t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= t 5 y( t )= t 10

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>{</mo><mtable columnalign="left"/></mrow></annotation-xml></semantics>[/itex] x(t)=4cos t y(t)=5sin t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mrow><mrow><mo>(</mo></mrow></mrow></msup></mrow></annotation-xml></semantics>[/itex] x 4 ) 2 + ( y 5 ) 2 =1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=3sin t y( t )=6cos t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>{</mo><mtable columnalign="left"/></mrow></annotation-xml></semantics>[/itex] x(t)=2 cos 2 t y(t)=−sin t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>y</mi></msup></mrow></annotation-xml></semantics>[/itex] 2 =1− 1 2 x

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=cos t+4 y(t)=2 sin 2 t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=t−1 y(t)= t 2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 +2x+1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=−t y(t)= t 3 +1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=2t−1 y(t)= t 3 −2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] ( x+1 2 ) 3 −2

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mtext>-</mtext><mi>y</mi></mrow></annotation-xml></semantics>[/itex] table.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=2t−1 y(t)=t+4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=4−t y(t)=3t+2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mo>−</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>14</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=2t−1 y(t)=5t

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x(t)=4t−1 y(t)=4t+2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>3</mn></mrow></annotation-xml></semantics>[/itex]

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=t or by setting<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x )=3 x 2 +3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x )=2sin x+1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=t y( t )=2sint+1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] y )=3log( y )+y

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] y )= y +2y

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= t +2t y( t )=t

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] t )=acos t and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>b</mi><mi>sin</mi><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Identify the curve.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><msup><mi>x</mi></msup></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2 4 + y 2 9 =1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><msup><mi>x</mi></msup></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2 16 + y 2 36 =1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=4cos t y( t )=6sin t ; Ellipse

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>x</mi></msup></mrow></annotation-xml></semantics>[/itex] 2 + y 2 =16

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>x</mi></msup></mrow></annotation-xml></semantics>[/itex] 2 + y 2 =10

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )= 10 cost y( t )= 10 sint ;  Circle

Parameterize the line from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−2</mn><mo>,</mo><mn>−5</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]so that the line is at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−2</mn><mo>,</mo><mn>−5</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>1.</mn></mrow></annotation-xml></semantics>[/itex]

Parameterize the line from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>−2</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]so that the line is at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>−2</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>1.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=−1+4t y( t )=−2t

Parameterize the line from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−1</mn><mo>,</mo><mn>5</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy="false">)</mo></mrow></annotation-xml></semantics>[/itex]so that the line is at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>−1</mn><mo>,</mo><mn>5</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>1.</mn></mrow></annotation-xml></semantics>[/itex]

Parameterize the line from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>6</mn><mo>,</mo><mn>−2</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]so that the line is at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo stretchy="false">(</mo><mn>6</mn><mo>,</mo><mn>−2</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]at<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mn>1.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=4+2t y( t )=1−3t

## Technology

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 1 (t)=3t y 1 (t)=2t−1  and { x 2 (t)=t+3 y 2 (t)=4t−4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 1 (t)= t 2 y 1 (t)=2t−1  and { x 2 (t)=−t+6 y 2 (t)=t+1

yes, at <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex]

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric equations.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 1 ( t )=3 t 2 −3t+7 y 1 ( t )=2t+3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>x</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>y</mi></annotation-xml></semantics>[/itex]
–1
0
1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 1 ( t )= t 2 −4 y 1 ( t )=2 t 2 −1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>x</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>y</mi></annotation-xml></semantics>[/itex]
1
2
3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>x</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>y</mi></annotation-xml></semantics>[/itex]
1 -3 1
2 0 7
3 5 17

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 1 ( t )= t 4 y 1 ( t )= t 3 +4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>t</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>x</mi></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>y</mi></annotation-xml></semantics>[/itex]
-1
0
1
2

## Extensions

Find two different sets of parametric equations for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] ( x+1 ) 2 .

answers may vary:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=t−1 y( t )= t 2  and { x( t )=t+1 y( t )= ( t+2 ) 2

Find two different sets of parametric equations for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi><mo>−</mo><mn>2.</mn></mrow></annotation-xml></semantics>[/itex]

Find two different sets of parametric equations for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 −4x+4.

answers may vary: ,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>{</mo></mrow></mrow></annotation-xml></semantics>[/itex] x( t )=t y( t )= t 2 −4t+4  and { x( t )=t+2 y( t )= t 2

## Glossary

parameter
a variable, often representing time, upon which<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are both dependent