Skip to main content
Mathematics LibreTexts

8.1: Linear Inequalities and Absolute Value Inequalities (Exercises)

  • Page ID
    56068
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For the following exercises, solve the inequality. Write your final answer in interval notation.

    60. \(5 x-8<12\)
    61. \(-2 x+5>x-7\)
    62. \(\frac{x-1}{3}+\frac{x+2}{5} \leq \frac{3}{5}\)
    63. \(|3 x+2|+1 \leq 9\)
    64. \(|5 x-1|>14\)
    65. \(|x-3|<-4\)

    For the following exercises, solve the compound inequality. Write your answer in interval notation.

    66. \(-4<3 x+2 \leq 18\)
    67. \(3 y<1-2 y<5+y\)

    For the following exercises, graph as described.

    68. Graph the absolute value function and graph the constant function. Observe the points of intersection and shade the \(x\) -axis representing the solution set to the inequality. Show your graph and write your final answer in interval notation. \[|x+3| \geq 5\nonumber\]
    69. Graph both straight lines (left-hand side being \(y^{-1}\) and right-hand side being y2) on the same axes. Find the point of intersection and solve the inequality by observing where it is true comparing the \(y\) -values of the lines. See the interval where the inequality is true. \[x+3<3 x-4\nonumber\]


    This page titled 8.1: Linear Inequalities and Absolute Value Inequalities (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?