Skip to main content
Mathematics LibreTexts

3.4E: Composition of Functions (Exercises)

  • Page ID
    56072
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For the following exercises, find \((f \circ g)(x)\) and \((g \circ f)(x)\) for each pair of functions.

    34. \(f(x)=4-x, \quad g(x)=-4 x\)
    35. \(f(x)=3 x+2, \quad g(x)=5-6 x\)
    36. \(f(x)=x^{2}+2 x, \quad g(x)=5 x+1\)
    37. \(f(x)=\sqrt{x+2}, \quad g(x)=\frac{1}{x}\)
    38. \(f(x)=\frac{x+3}{2}, \quad g(x)=\sqrt{1-x}\)

    For the following exercises, find \((f \circ g)\) and the domain for \((f \circ g)(x)\) for each pair of functions.

    39. \(f(x)=\frac{x+1}{x+4}, \quad g(x)=\frac{1}{x}\)
    40. \(f(x)=\frac{1}{x+3}, \quad g(x)=\frac{1}{x-9}\)
    41. \(f(x)=\frac{1}{x}, \quad g(x)=\sqrt{x}\)
    42. \(f(x)=\frac{1}{x^{2}-1}, \quad g(x)=\sqrt{x+1}\)

    For the following exercises, express each function \(H\) as a composition of two functions \(f\) and \(g\) where \(H(x)=(f \circ g)(x)\).

    43. \(H(x)=\sqrt{\frac{2 x-1}{3 x+4}}\)
    44. \(H(x)=\frac{1}{\left(3 x^{2}-4\right)^{-3}}\)


    This page titled 3.4E: Composition of Functions (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?