9.4: Binomial Theorem
( \newcommand{\kernel}{\mathrm{null}\,}\)
Learning Objectives
- Evaluate expressions involving factorials.
- Calculate binomial coefficients.
- Expand powers of binomials using the binomial theorem.
Factorials and the Binomial Coefficient
We begin by defining the factorial25 of a natural number n, denoted n!, as the product of all natural numbers less than or equal to n.
n !=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1
For example,
\begin{array}{l}{7 !=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5,040 \quad\color{Cerulean}{Seven\:factorial}} \\[4pt] {5 !=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120\quad\quad\quad\quad\:\color{Cerulean}{Five\:factorial}} \\[4pt] {3 !=3 \cdot 2 \cdot 1=6\quad\quad\quad\quad\quad\quad\:\:\:\quad\color{Cerulean}{Three\:factorial}} \\[4pt] {1 !=1=1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\color{Cerulean}{One\:factorial}}\end{array}
We define zero factorial26 to be equal to 1,
0 !=1 \quad\color{Cerulean}{Zero\:factorial}
The factorial of a negative number is not defined.
On most modern calculators you will find a factorial function. Some calculators do not provide a button dedicated to it. However, it usually can be found in the menu system if one is provided.
The factorial can also be expressed using the following recurrence relation,
n !=n(n-1) !
For example, the factorial of 8 can be expressed as the product of 8 and 7!:
\begin{aligned} 8 ! &=8 \cdot \color{Cerulean}{7 !} \\[4pt] &=8 \cdot \color{Cerulean}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\[4pt] &=40,320 \end{aligned}
When working with ratios involving factorials, it is often the case that many of the factors cancel.
Example \PageIndex{1}
Evaluate: \frac{12 !}{6 !}.
Solution
\begin{aligned} \frac{12 !}{6 !}&=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot \color{Cerulean}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}}{\color{Cerulean}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}}\\[4pt] &=\frac{12\cdot11\cdot10\cdot9\cdot8\cdot7 \cdot \cancel{6!}}{\cancel{6!}} \\[4pt] &=12\cdot11\cdot10\cdot9\cdot8\cdot7\\[4pt] &=665,280\end{aligned}
Answer
665,280
The binomial coefficient27, denoted _{n} C_{k}=\left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right), is read “n choose k” and is given by the following formula:
_{n} C_{k}=\left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right)=\frac{n !}{k !(n-k) !}
This formula is very important in a branch of mathematics called combinatorics. It gives the number of ways k elements can be chosen from a set of n elements where order does not matter. In this section, we are concerned with the ability to calculate this quantity.
Example \PageIndex{2}
Calculate \left( \begin{array}{l}{7} \\[4pt] {3}\end{array}\right).
Solution
Use the formula for the binomial coefficient,
\left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right)=\frac{n !}{k !(n-k) !}
where n = 7 and k = 3. After substituting, look for factors to cancel.
\begin{aligned} \left( \begin{array}{l}{7} \\[4pt] {3}\end{array}\right) &=\frac{7 !}{3 !(7-3) !} \\[4pt] &=\frac{7 !}{3 ! 4 !} \\[4pt] &=\frac{7\cdot6\cdot5\cdot\cancel{\color{Cerulean}{4!}}}{3! \cancel{\color{Cerulean}{4!}}} \\[4pt]&=\frac{210}{6} \\[4pt] &=35\end{aligned}
Answer:
35
Check the menu system of your calculator for a function that calculates this quantity. Look for the notation _{n} C_{k} in the probability subsection.
Exercise \PageIndex{1}
Calculate \left( \begin{array}{l}{8} \\[4pt] {5}\end{array}\right).
- Answer
-
56
www.youtube.com/v/Rpb8KD1HQGc
Consider the following binomial raised to the 3^{rd} power in its expanded form:
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
Compare it to the following calculations,
\left( \begin{array}{l}{3} \\[4pt] {0}\end{array}\right)=\dfrac{3 !}{0 !(3-0) !}=\frac{3 !}{1 \cdot 3 !}=1
\left( \begin{array}{l}{3} \\[4pt] {1}\end{array}\right)=d\frac{3 !}{1 !(3-1) !}=\frac{3 \cdot 2 !}{1 \cdot 2 !}=3
\left( \begin{array}{l}{3} \\[4pt] {2}\end{array}\right)=\dfrac{3 !}{2 !(3-2) !}=\frac{3 \cdot 2 !}{2 !}=3
\left( \begin{array}{c}{3} \\[4pt] {3}\end{array}\right)=\dfrac{3 !}{3 !(3-3) !}=\frac{3 !}{3 ! 0 !}=1
Notice that there appears to be a connection between these calculations and the coefficients of the expanded binomial. This observation is generalized in the next section.
Binomial Theorem
Consider expanding (x+2)^{5} :
(x+2)^{5}=(x+2)(x+2)(x+2)(x+2)(x+2)
One quickly realizes that this is a very tedious calculation involving multiple applications of the distributive property. The binomial theorem28 provides a method of expanding binomials raised to powers without directly multiplying each factor:
(x+y)^{n}=\left( \begin{array}{c}{n} \\[4pt] {0}\end{array}\right) x^{n} y^{0}+\left( \begin{array}{c}{n} \\[4pt] {1}\end{array}\right) x^{n-1} y^{1}+\left( \begin{array}{c}{n} \\[4pt] {2}\end{array}\right) x^{n-2} y^{2}+\ldots+\left( \begin{array}{c}{n} \\[4pt] {n-1}\end{array}\right) x^{1} y^{n-1}
More compactly we can write,
(x+y)^{n}=\sum_{k=0}^{n} \left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right) x^{n-k} y^{k} \quad \color{Cerulean}{Binomial\:theorem} \nonumber
Example \PageIndex{3}
Expand using the binomial theorem: (x + 2)^{5}.
Solution
Use the binomial theorem where n = 5 and y = 2.
(x+2)^{5}=\left( \begin{array}{l}{5} \\[4pt] {0}\end{array}\right) x^{5} 2^{0}+\left( \begin{array}{c}{5} \\[4pt] {1}\end{array}\right) x^{4} 2^{1}+\left( \begin{array}{l}{5} \\[4pt] {2}\end{array}\right) x^{3} 2^{2}+\left( \begin{array}{l}{5} \\[4pt] {3}\end{array}\right) x^{2} 2^{3}+\left( \begin{array}{l}{5} \\[4pt] {4}\end{array}\right) x^{1}2^{4}
Sometimes it is helpful to identify the pattern that results from applying the binomial theorem. Notice that powers of the variable x start at 5 and decrease to zero. The powers of the constant term start at 0 and increase to 5. The binomial coefficients can be calculated off to the side and are left to the reader as an exercise.
\begin{aligned}(x+2)^{5} &=\left( \begin{array}{c}{5} \\[4pt] {0}\end{array}\right) x^{5} 2^{0}+\left( \begin{array}{c}{5} \\[4pt] {1}\end{array}\right) x^{4} 2^{1}+\left( \begin{array}{c}{5} \\[4pt] {2}\end{array}\right) x^{3} 2^{2}+\left( \begin{array}{c}{5} \\[4pt] {3}\end{array}\right) x^{2} 2^{3}+\left( \begin{array}{c}{5} \\[4pt] {4}\end{array}\right) x^{1} 2^{4} \\[4pt] &=1 x^{5} \times 1+5 x^{4} \times 2+10 x^{3} \times 4+10 x^{2} \times 8+5 x^{1} \times 16+1 \times 1 \\[4pt] &=x^{5}+10 x^{4}+40 x^{3}+80 x^{2}+80 x+32 \end{aligned}
Answer
x^{5}+10 x^{4}+40 x^{3}+80 x^{2}+80 x+32
The binomial may have negative terms, in which case we will obtain an alternating series.
Example \PageIndex{4}
Expand using the binomial theorem: (u − 2v)^{4}.
Solution
Use the binomial theorem where n = 4, x = u, and y = −2v and then simplify each term.
\begin{aligned}(u-2 v)^{4} &=\left( \begin{array}{c}{4} \\[4pt] {0}\end{array}\right) u^{4}(-2 v)^{0}+\left( \begin{array}{c}{4} \\[4pt] {1}\end{array}\right) u^{3}(-2 v)^{1}+\left( \begin{array}{c}{4} \\[4pt] {2}\end{array}\right) u^{2}(-2 v)^{2}+\left( \begin{array}{c}{4} \\[4pt] {3}\end{array}\right) u^{1}(-2v)^{3} + \left(\begin{array}{c}4 \\[4pt]4 \end{array} \right)u^{0}(-2v)^{4} \\[4pt] &=1 \times u^{4} \times 1+4 u^{3}(-2 v)+6 u^{2}\left(4 v^{2}\right)+4 u\left(-8 v^{3}\right) + 16v^{4} \\[4pt] &=u^{4}-8 u^{3} v+24 u^{2} v^{2}-32 u v^{3}+16 v^{4} \end{aligned}
Answer
u^{4}-8 u^{3} v+24 u^{2} v^{2}-32 u v^{3}+16 v^{4}
Exercise \PageIndex{2}
Expand using the binomial theorem: \left(a^{2}-3\right)^{4}
- Answer
-
a^{8}-12 a^{6}+54 a^{4}-108 a^{2}+81
www.youtube.com/v/wICbqmoa4T4
Next we study the coefficients of the expansions of (x + y)^{n} starting with n = 0:
\begin{align*} (x+y)^{0} &=1 \\[4pt] (x+y)^{1}&=x+y \\[4pt] (x+y)^{2}&=x+y \\[4pt] (x+y)^{3}&=x^{2}+2 x y+y^{2} \\[4pt] (x+y)^{3}&=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\[4pt] (x+y)^{4}&=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \end{align*}
Write the coefficients in a triangular array and note that each number below is the sum of the two numbers above it, always leaving a 1 on either end.

This is Pascal’s triangle29; it provides a quick method for calculating the binomial coefficients. Use this in conjunction with the binomial theorem to streamline the process of expanding binomials raised to powers. For example, to expand (x − 1)^{6} we would need two more rows of Pascal’s triangle,

The binomial coefficients that we need are in blue. Use these numbers and the binomial theorem to quickly expand (x − 1)^{6} as follows:
\begin{aligned}(x-1)^{6} &=1 x^{6}(-1)^{0}+6 x^{5}(-1)^{1}+15 x^{4}(-1)^{2}+20 x^{3}(-1)^{3}+15 x^{2}(-1)^{4}+6 x(-1)^{5} \\[4pt] &=x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1 \end{aligned}
Example \PageIndex{5}
Expand using the binomial theorem and Pascal’s triangle: (2x − 5)^{4}.
Solution
From Pascal’s triangle we can see that when n = 4 the binomial coefficients are 1, 4, 6, 4, and 1.Use these numbers and the binomial theorem as follows:
\begin{aligned}(2 x-5)^{4} &=1(2 x)^{4}(-5)^{0}+4(2 x)^{3}(-5)^{1}+6(2 x)^{2}(-5)^{2}+4(2 x)^{1}(-5)^{3}+(2 x)^{0}(-5)^{4} \\[4pt] &=16 x^{4} \cdot 1+4 \cdot 8 x^{3}(-5)+6 \cdot 4 x^{2} \cdot 25+4 \cdot 2 x(-125)+1 \cdot 625 \\[4pt] &=16 x^{4}-160 x^{3}+600 x^{2}-1,000 x+625 \end{aligned}
Answer:
16 x^{4}-160 x^{3}+600 x^{2}-1,000 x+625
Key Takeaways
- To calculate the factorial of a natural number, multiply that number by all natural numbers less than it: 5! = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120. Remember that we have defined 0! = 1.
- The binomial coefficients are the integers calculated using the formula: \left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right)=\frac{n !}{k !(n-k) !}. \nonumber
- The binomial theorem provides a method for expanding binomials raised to powers without directly multiplying each factor: (x+y)^{n}=\sum_{k=0}^{n} \left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right) x^{n-k} y^{k}\nonumber
- Use Pascal’s triangle to quickly determine the binomial coefficients.
Exercise \PageIndex{3}
Evaluate.
- 6!
- 4!
- 10!
- 9!
- \frac{6 !}{3 !}
- \frac{8 !}{4 !}
- \frac{13 !}{9 !}
- \frac{15 !}{10 !}
- \frac{12 !}{3 ! 7 !}
- \frac{10 !}{2 ! 5 !}
- \frac{n !}{(n-2) !}
- \frac{(n+1) !}{(n-1) !}
- (a) 4 !+3 ! (b) (4+3) !
- (a) 4 !-3 ! (b) (4-3) !
- Answer
-
1. 720
3. 3,628,800
5. 120
7. 17,160
9. 15,840
11. n^{2} − n
13. a. 30 b. 5,040
Exercise \PageIndex{4}
Rewrite using factorial notation.
- 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7
- 1 \times 2 \times 3 \times 4 \times 5
- 15 \times 14 \times 13
- 10 \times 9 \times 8 \times 7
- 13
- 8 \times 7
- n(n-1)(n-2)
- 1 \times 2 \times 3 \times \cdots \times n \times(n+1)
- Answer
-
1. 7!
3. \frac{15 !}{12 !}
5. \frac{13 !}{12 !}
7. \frac{n !}{(n-3) !}
Exercise \PageIndex{5}
Calculate the indicated binomial coefficient.
- \left( \begin{array}{l}{6} \\[4pt] {4}\end{array}\right)
- \left( \begin{array}{l}{8} \\[4pt] {4}\end{array}\right)
- \left( \begin{array}{l}{7} \\[4pt] {2}\end{array}\right)
- \left( \begin{array}{l}{9} \\[4pt] {5}\end{array}\right)
- \left( \begin{array}{l}{9} \\[4pt] {0}\end{array}\right)
- \left( \begin{array}{l}{13} \\[4pt] {12}\end{array}\right)
- \left( \begin{array}{l}{n} \\[4pt] {0}\end{array}\right)
- \left( \begin{array}{l}{n} \\[4pt] {n}\end{array}\right)
- \left( \begin{array}{l}{n} \\[4pt] {1}\end{array}\right)
- \left( \begin{array}{c}{n} \\[4pt] {n-1}\end{array}\right)
- _{10} C_{8}
- _{5} C_{1}
- _{12} C_{12}
- _{10} C_{5}
- _{n} C_{n-2}
- _{n} C_{n-3}
- Answer
-
1. 15
3. 21
5. 1
7. 1
9. n
11. 45
13. 1
15. \frac{n^{2}-n}{2}
Exercise \PageIndex{6}
Expand using the binomial theorem.
- (4 x-3)^{3}
- (2 x-5)^{3}
- \left(\frac{x}{2}+y\right)^{3}
- \left(x+\frac{1}{y}\right)^{3}
- (x+3)^{4}
- (x+5)^{4}
- (x-4)^{4}
- (x-2)^{4}
- \left(x+\frac{2}{y}\right)^{4}
- \left(\frac{x}{3}-y\right)^{4}
- (x+1)^{5}
- (x-3)^{5}
- (x-2)^{6}
- (x+1)^{6}
- (x-1)^{7}
- (x+1)^{7}
- (5 x-1)^{4}
- (3 x-2)^{4}
- (4 u+v)^{4}
- (3 u-v)^{4}
- (u-5 v)^{5}
- (2 u+3 v)^{5}
- \left(a-b^{2}\right)^{5}
- \left(a^{2}+b^{2}\right)^{4}
- \left(a^{2}+b^{4}\right)^{6}
- \left(a^{5}+b^{2}\right)^{5}
- (x+\sqrt{2})^{3}
- (x-\sqrt{2})^{4}
- (\sqrt{x}-\sqrt{y})^{4}, x, y \geq 0
- (\sqrt{x}+2 \sqrt{y})^{5}, x, y \geq 0
- (x+y)^{7}
- (x+y)^{8}
- (x+y)^{9}
- (x-y)^{7}
- (x-y)^{8}
- (x-y)^{9}
- Answer
-
1. 64 x^{3}-144 x^{2}+108 x-27
3. \frac{x^{3}}{8}+\frac{3 x^{2} y}{4}+\frac{3 x y^{2}}{2}+y^{3}
5. x^{4}+12 x^{3}+54 x^{2}+108 x+81
7. x^{4}-16 x^{3}+96 x^{2}-256 x+256
9. x^{4}+\frac{8 x^{3}}{y}+\frac{24 x^{2}}{y^{2}}+\frac{32 x}{y^{3}}+\frac{16}{y^{4}}
11. x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+5 x+1
13. x^{6}-12 x^{5}+60 x^{4}-160 x^{3}+240 x^{2}-192 x+64
15. x^{7}-7 x^{6}+21 x^{5}-35 x^{4}+35 x^{3}-21 x^{2}+7 x-1
17. 625 x^{4}-500 x^{3}+150 x^{2}-20 x+1
19. 256 u^{4}+256 u^{3} v+96 u^{2} v^{2}+16 u v^{3}+v^{4}
21. \begin{array}{l}{u^{5}-25 u^{4} v+250 u^{3} v^{2}-1,250 u^{2} v^{3}} {+3,125 u v^{4}-3,125 v^{5}}\end{array}
23. a^{5}-5 a^{4} b^{2}+10 a^{3} b^{4}-10 a^{2} b^{6}+5 a b^{8}-b^{10}
25. \begin{array}{l}{a^{12}+6 a^{10} b^{4}+15 a^{8} b^{8}+20 a^{6} b^{12}} {+15 a^{4} b^{16}+6 a^{2} b^{20}+b^{24}}\end{array}
27. x^{3}+3 \sqrt{2} x^{2}+6 x+2 \sqrt{2}
29. x^{2}-4 x \sqrt{x y}+6 x y-4 y \sqrt{x y}+y^{2}
31. \begin{array}{l}{x^{7}+7 x^{6} y+21 x^{5} y^{2}+35 x^{4} y^{3}} {+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x y^{6}+y^{7}}\end{array}
33. \begin{array}{l}{x^{9}+9 x^{8} y+36 x^{7} y^{2}+84 x^{6} y^{3}+126 x^{5} y^{4}} {+126 x^{4} y^{5}+84 x^{3} y^{6}+36 x^{2} y^{7}+9 x y^{8}+y^{9}}\end{array}
35. \begin{array}{l}{x^{8}-8 x^{7} y+28 x^{6} y^{2}-56 x^{5} y^{3}+70 x^{4} y^{4}} {-56 x^{3} y^{5}+28 x^{2} y^{6}-8 x y^{7}+y^{8}}\end{array}
Exercise \PageIndex{7}
- Determine the factorials of the integers 5, 10, 15, 20, and 25. Which grows faster, the common exponential function a_{n} = 10^{n} or the factorial function a_{n} = n!? Explain.
- Research and discuss the history of the binomial theorem.
- Answer
-
1. Answer may vary
Footnotes
25The product of all natural numbers less than or equal to a given natural number, denoted n!.
26The factorial of zero is defined to be equal to 1; 0! = 1.
27An integer that is calculated using the formula: \left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right)=\frac{n !}{k !(n-k) !}
28Describes the algebraic expansion of binomials raised to powers: (x+y)^{n}=\sum_{k=0}^{n} \left( \begin{array}{l}{n} \\[4pt] {k}\end{array}\right) x^{n-k} y^{k}.
29A triangular array of numbers that correspond to the binomial coefficients.