3.11: Proficiency Exam
- Page ID
- 58494
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Proficiency Exam
Simplify the expressions for the following problems.
\(-\{-[(-6)]\}\)
- Answer
-
\(-6\)
\(-|-15|\)
- Answer
-
\(-15\)
\(-[|-12|-10]^2\)
- Answer
-
\(-4\)
\(-5(-6)+4(-8)-|-5|\)
- Answer
-
\(-7\)
\(\dfrac{3(-8)-(-2)(-4-5)}{(-2)(-3)}\)
- Answer
-
\(-7\)
\(-|7|-(2)^2+(-2)^2\)
- Answer
-
\(-7\)
\(\dfrac{-6(2)(-2)}{-(-5-3)}\)
- Answer
-
\(3\)
\(\dfrac{-2\{[(-2-3)][-2]\}}{-3(4-2)}\)
- Answer
-
\(5\)
If \(z = \dfrac{x-u}{s}\), \(z\) is \(x = 14, u = 20\), and \(s = 2\).
- Answer
-
\(-3\)
When simplifying the terms for the following problems, write each so that only positive exponents appear.
\(\dfrac{1}{-(-5)^{-3}}\)
- Answer
-
\(125\)
\(\dfrac{5x^3y^{-2}}{x^{-4}}\)
- Answer
-
\(\dfrac{5x^3z^4}{y^2}\)
\(2^{-2}m^6(n-4)^{-3}\)
- Answer
-
\(\dfrac{m^6}{4(n-4)^3}\)
\(4a^{-6}(2a^{-5})\)
- Answer
-
\(\dfrac{8}{a^{11}}\)
\(\dfrac{6^{-1}x^3y^{-5}z^{-3}}{y^{-5}}\)
- Answer
-
\(\dfrac{1}{6}\)
\(\dfrac{(k-6)^2(k-6)^{-4}}{(k-6)^3}\)
- Answer
-
\(\dfrac{1}{(k-6)^5}\)
\(\dfrac{(y+1)^3(y-3)^4}{(y+1)^5(y-3)^{-8}}\)
- Answer
-
\(\dfrac{(y-3)^{12}}{(y+1)^2}\)
\(\dfrac{(3^{-6})(3^2)(3^{-10})}{(3^{-5})(3^{-9})}\)
- Answer
-
\(1\)
\((a^4)^{-3}\)
- Answer
-
\(\dfrac{1}{a^{12}}\)
\([\dfrac{r^6s^{-2}}{m^{-5}n^4}]^{-4}\)
- Answer
-
\(\dfrac{n^{16}s^8}{m^{20}r^{24}}\)
\((c^0)^{-2}, c \not = 0\)
- Answer
-
\(1\)
Write 0.000271 using scientific notation.
- Answer
-
\(2.71 \times 10^{-4}\)
Write \(8.90 \times 10^5\) in standard form.
- Answer
-
890,000
Find the value of \((3 \times 10^5)(2 \times 10^{2})\).
- Answer
-
6000
Find the value of \((4 \times 10^{-16})^2\)
- Answer
-
\(1.6 \times 10^{-31}\)
If \(k\) is a negative integer, is \(-k\) a positive or negative integer?
- Answer
-
a positive integer