Skip to main content
Mathematics LibreTexts

11.8: Proficiency Exam

  • Page ID
    49416
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Proficiency Exam

    Exercise \(\PageIndex{1}\)

    Solve using graphing:

    \(\left\{\begin{array}{r}
    3x + 2y = 4\\
    15x + 10y = -10
    \end{array}\right.\)

    An xy coordinate plane with gridlines, labeled negative five and five with increments of one unit for both axes.

    Answer

    inconsistent

    A graph of two parallel lines. One line is labeled with the equation three x plus two y equals four and passes through the points zero, two and two, negative one. A second line is labeled with the equation fifteen x plus ten y equals negative ten and passes through the points zero, negative one and two, negative four.

    Exercise \(\PageIndex{2}\)

    Solve using graphing:

    \(\left\{\begin{array}{r}
    2x - 3y = 2\\
    x + 2y = 8
    \end{array}\right.\)

    An xy coordinate plane with gridlines, labeled negative five and five with increments of one unit for both axes.

    Answer

    (4,2)

    A graph of two lines intersecting at a point with coordinates four, two. One line is labeled with the equation x plus two y equals eight and passes through the points zero, four.  A second line is labeled with the equation two x minus three y equals two and passes through the points zero, negative two over three and one, zero.

    Exercise \(\PageIndex{3}\)

    Solve using substitution:

    \(\left\{\begin{array}{r}
    2x + 6y = 16\\
    x - 4y = -13
    \end{array}\right.\)

    Answer

    \((−1,3)\)

    Exercise \(\PageIndex{4}\)

    Solve using addition:

    \(\left\{\begin{array}{r}
    3x + 8y = -5\\
    x - 2y = 3
    \end{array}\right.\)

    Answer

    \((1, -1)\)

    Exercise \(\PageIndex{5}\)

    Solve using either substitution or addition:

    \(\left\{\begin{array}{r}
    4x - 4y = 8\\
    x - y = 5
    \end{array}\right.\)

    Answer

    inconsistent

    Exercise \(\PageIndex{6}\)

    Solve using either substitution or addition:

    \(\left\{\begin{array}{r}
    9x + 3y = 12\\
    3x - y = 4
    \end{array}\right.\)

    Answer

    \((\dfrac{4}{3}, 0)\)

    Exercise \(\PageIndex{7}\)

    The sum of two numbers is 43 and the difference of the same two numbers is 7. What are the numbers?

    Answer

    18 and 25

    Exercise \(\PageIndex{8}\)

    A chemist needs 80 ml of an 18% acid solution. She has two acid solutions, A and B, to mix together to form the 80-ml solution. Acid solution A is 15% acid and acid solution B is 20% acid. How much of each solution should be used?

    Answer

    32 ml of solution A;  48 ml of solution B.

    Exercise \(\PageIndex{9}\)

    A parking meter contains 32 coins. If the meter contains only nickels and quarters, and the total value of the coins is $4.60, how many of each type of coin are there?

    Answer

    17 nickels and 15 quarters

    Exercise \(\PageIndex{10}\)

    A person has $15,000 to invest. If he invests part at 8% and the rest at 12%, how much should he invest at each rate to produce the same return as if he had invested it all at 9%?

    Answer

    $11,250 at 8%;  $3,750 at 12%


    This page titled 11.8: Proficiency Exam is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?