9.3E: Exercises
- Page ID
- 30562
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Practice Makes Perfect
In the following exercises, complete the square to make a perfect square trinomial. Then write the result as a binomial squared.
-
- \(m^{2}-24 m\)
- \(x^{2}-11 x\)
- \(p^{2}-\frac{1}{3} p\)
-
- \(n^{2}-16 n\)
- \(y^{2}+15 y\)
- \(q^{2}+\frac{3}{4} q\)
-
- \(p^{2}-22 p\)
- \(y^{2}+5 y\)
- \(m^{2}+\frac{2}{5} m\)
-
- \(q^{2}-6 q\)
- \(x^{2}-7 x\)
- \(n^{2}-\frac{2}{3} n\)
- Answer
-
1. a. \((m-12)^{2}\) b. \(\left(x-\frac{11}{2}\right)^{2}\) c. \(\left(p-\frac{1}{6}\right)^{2}\)
3. a. \((p-11)^{2}\) b. \(\left(y+\frac{5}{2}\right)^{2}\) c. \(\left(m+\frac{1}{5}\right)^{2}\)
In the following exercises, solve by completing the square.
5. \(u^{2}+2 u=3\)
6. \(z^{2}+12 z=-11\)
7. \(x^{2}-20 x=21\)
8. \(y^{2}-2 y=8\)
9. \(m^{2}+4 m=-44\)
10. \(n^{2}-2 n=-3\)
11. \(r^{2}+6 r=-11\)
12. \(t^{2}-14 t=-50\)
13. \(a^{2}-10 a=-5\)
14. \(b^{2}+6 b=41\)
15. \(x^{2}+5 x=2\)
16. \(y^{2}-3 y=2\)
17. \(u^{2}-14 u+12=-1\)
18. \(z^{2}+2 z-5=2\)
19. \(r^{2}-4 r-3=9\)
20. \(t^{2}-10 t-6=5\)
21. \(v^{2}=9 v+2\)
22. \(w^{2}=5 w-1\)
23. \(x^{2}-5=10 x\)
24. \(y^{2}-14=6 y\)
25. \((x+6)(x-2)=9\)
26. \((y+9)(y+7)=80\)
27. \((x+2)(x+4)=3\)
28. \((x-2)(x-6)=5\)
- Answer
-
5. \(u=-3, u=1\)
7. \(x=-1, x=21\)
9. \(m=-2 \pm 2 \sqrt{10} i\)
11. \(r=-3 \pm \sqrt{2} i\)
13. \(a=5 \pm 2 \sqrt{5}\)
15. \(x=-\frac{5}{2} \pm \frac{\sqrt{33}}{2}\)
17. \(u=1, u=13\)
19. \(r=-2, r=6\)
21. \(v=\frac{9}{2} \pm \frac{\sqrt{89}}{2}\)
23. \(x=5 \pm \sqrt{30}\)
25. \(x=-7, x=3\)
27. \(x=-5, x=-1\)
In the following exercises, solve by completing the square.
29. \(3 m^{2}+30 m-27=6\)
30. \(2 x^{2}-14 x+12=0\)
31. \(2 n^{2}+4 n=26\)
32. \(5 x^{2}+20 x=15\)
33. \(2 c^{2}+c=6\)
34. \(3 d^{2}-4 d=15\)
35. \(2 x^{2}+7 x-15=0\)
36. \(3 x^{2}-14 x+8=0\)
37. \(2 p^{2}+7 p=14\)
38. \(3 q^{2}-5 q=9\)
39. \(5 x^{2}-3 x=-10\)
40. \(7 x^{2}+4 x=-3\)
- Answer
-
29. \(m=-11, m=1\)
31. \(n=1 \pm \sqrt{14}\)
33. \(c=-2, c=\frac{3}{2}\)
35. \(x=-5, x=\frac{3}{2}\)
37. \(p=-\frac{7}{4} \pm \frac{\sqrt{161}}{4}\)
39. \(x=\frac{3}{10} \pm \frac{\sqrt{191}}{10} i\)
41. Solve the equation \(x^{2}+10 x=-25\)
- by using the Square Root Property
- by Completing the Square
- Which method do you prefer? Why?
42. Solve the equation \(y^{2}+8y=48\) by completing the square and explain all your steps.
- Answer
-
41. Answers will vary
Self Check
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

b. After reviewing this checklist, what will you do to become confident for all objectives?