7.8: Factoring Expressions and Solving by Factoring- Answers to the Homework Exercises
- Page ID
- 45073
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)GCF and Grouping
- \(9+8b^2\)
- \(7(8-5p)\)
- \(-3a^2b(1-2ab)\)
- \(10(2x^4-3x+3)\)
- \(5(6b^9+ab-3a^2)\)
- \(5x^3y^2z(4x^5z + 3x^2 + 7y)\)
- \(5q(6pr-p+1)\)
- \(-10x^{11}(4+2x-5x^2+5x^3)\)
- \(x-5\)
- \(10(5x-8y)\)
- \(4x^3(2y^2+1)\)
- \(3(7p^6+10p^2+9)\)
- \(3(7p^6+10p^2+9)\)
- \(3(p+4q-5q^2r^2)\)
- \(7b(4+2b+5b^2+b^4)\)
- \(-4x^2(6x^4+x^2-3x-1)\)
- \((8r^2-5)(5r-1)\)
- \((3b^2-7)(5b+7)\)
- \((7x^2-4)(5x-4)\)
- \((8x+3)(4y+5x)\)
- \((2x+7y^2)(y-4x)\)
- \((4u+3)(8v-5)\)
- \((3u-7)(v-2u)\)
- \((5x^2-8)(7x-2)\)
- \((6x^2+5)(x-8)\)
- \((7n^2-5)(n+3)\)
- \((3a+b^2)(5b-2)\)
- \((m-5)(5n+2)\)
- \(2(u+3)(2v+7u)\)
- \((7a-2)(8b-7)\)
Factoring Trinomials of the Form \(x^2+bx+c\)
- \((p+9)(p+8)\)
- \((x+1)(x-10)\)
- \((x-7)(x+10)\)
- \((p+6)(p+9)\)
- \((u-5v)(u-3v)\)
- \((x-9y)(x-2y)\)
- \((x+6y)(x-2y)\)
- \(6(a-4)(a+8)\)
- \(6(x+9y)(x+7y)\)
- \((x-5)(x+6)\)
- \((b-10)(b-7)\)
- \((a+3)(a-9)\)
- \((m-5n)(m-10n)\)
- \((x+8y)(x+2y)\)
- \((x+5y)(x+9y)\)
- \(5(n-8)(n-1)\)
- \(5(m^2+6mn-18n^2)\)
Factoring Trinomials of the Form \(ax^2+bx+c\)
- \(p=1\)
- \(p=1\)
- \((7x-6)(x-6)\)
- \((5a+7)(a-4)\)
- \((2x+5)(x+7)\)
- \((5k+3)(k+2)\)
- \((3x+2y)(x+5y)\)
- \(3(2x+1)(x-7)\)
- \(2(7x-2)(x-4)\)
- \((k-4)(4k-1)\)
- \((m-3n)(4m+3n)\)
- \(2(2x+7y)(3x+5y)\)
- \((7n-2)(n-6)\)
- Prime, not factorable
- \((7x-6)(x+5)\)
- \((3r+7)(r+3)\)
- \((7x+5y)(x-y)\)
- \(2(5a+3)(a-6)\)
- \((r+1)(4r-3)\)
- \((r-1)(4r+7)\)
- \(2(2x^2-3xy+15y^2)\)
- \(4(x+3y)(4x+3y)\)
- \((x-2y+9)(x-2y-2)\)
- \((5a-3b+4)(5a-3b+4)\)
- \((w^{1/5}+8)(w^{1/5}-10)\)
- \((x^{1/3}+10)(x^{1/3}-2)\)
Special Products
- \((r+4)(r-4)\)
- \((p+2)(p-2)\)
- \(3(x+3)(x-3)\)
- \(2(3a+5b)(3a-5b)\)
- \((x+3)^2\)
- \((5p-1)^2\)
- \((2a-5b)^2\)
- \((2-m)(4+2m+m^2)\)
- \((6-u)(36+6u+u^2)\)
- \((4x+3y)(16x^2-12xy+9y^2)\)
- \((a^2+9)(a+3)(a-3)\)
- \((x^2+y^2)(x+y)(x-y)\)
- \((x+3)(x-3)\)
- \((2v+1)(2v-1)\)
- \(5(n+2)(n-2)\)
- \(4(m^2+16n^2)\)
- \((n-4)^2\)
- \((x+1)^2\)
- \(2(3m-2n)^2\)
- \((x+4)(x^2-4x+16)\)
- \((5x-6)(25x^2+30x+36)\)
- \(4(2m-3n)(4m^2+6mn+9n^2)\)
- \((x^2+16)(x+4)(x-4)\)
- \((4a^2+b^2)(2a+b)(2a-b)\)
Factoring, A General Strategy
- \(3(2a+5y)(4z-3h)\)
- \(-2(x-4y)(x^2+4xy+16y^2)\)
- \(2(3u-2)(9u^2+6u+4)\)
- \((x-3y)(x-y)\)
- \((m+2n)(m-2n)\)
- \(2(4+3x)(16-12x+9x^2)\)
- \(n(n+2)(n+5)\)
- \(x(5x+2)\)
- \((m-4x)(n+3)\)
- \(3(3m+4n)(3m-4n)\)
- \(2(m-2n)(m+5n)\)
- \(4(2x+3y)^2\)
- \(x(2x+3y)(x+y)\)
- \((5x+3)(x-5)\)
- \((x-3y)(x^2+3xy+9y^2)\)
- \(3m(m+2n)(m-4n)\)
- \((3a+x^2)(c+5d^2)\)
- \((4a+3b)(4a-3b)\)
- \(2(4x+3y)(4x-3y)\)
- \(v(v+1)\)
- \(3n^2(3n-1)\)
Solve by Factoring
- \(7,-2\)
- \(-5,5\)
- \(-\dfrac{5}{7},-3\)
- \(4,0\)
- \(\dfrac{3}{7},-8\)
- \(-4,-3\)
- \(\dfrac{8}{3},-5\)
- \(-4,1\)
- \(-\dfrac{5}{2},-8\)
- \(-4,3\)
- \(4,-8\)
- \(-\dfrac{7}{8},8\)
- \(8,0\)
- \(-\dfrac{1}{7},-8\)
- \(8,-4\)
- \(-\dfrac{1}{2},\dfrac{5}{3}\)
- \(2,-3\)
- \(-\dfrac{6}{5},-7\)
- \(5,7\)
Solve Applications by Factoring
- \(8,13\)
- \(6,8\)
- \(4,11\)
- \(4,7\)
- \(6,9\)
- \(13\times 9\) inches
- \(9\times 5\) inches
- \(10\times 4\) inches
- \(12\times 8\) inches
- \(11\times 8\) inches
- \(7\) seconds
- \(16\) units