Skip to main content
Mathematics LibreTexts

8.3: Obtain the Lowest Common Denominator

  • Page ID
    45077
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    As with fractions in arithmetic, the least common denominator or LCD is the lowest common multiple (LCM) of the denominators. Since rational expressions are fractions with polynomials, we use the LCD to add and subtract rational expression with different denominators. In this section, we obtain LCDs of rational expressions. First, let’s take a look at the method in finding the LCM in arithmetic.

    Obtain the LCM in Arithmetic

    Example 8.3.1

    Find \(\text{LCM}(3,6,15)\).

    Solution

    Find the prime factorization of each number in your set.

    \[\begin{aligned}3&=3 \\ 6&=2\cdot 3 \\ 15&=3\cdot 5\end{aligned}\]

    Next, take one of each factor and, for repeated factors, take the highest exponent. Hence, the \(\text{LCM}(3, 6, 15) = 2\cdot 3\cdot 5 = 30\). Notice all factors of each number is in the LCM:

    \[\begin{array}{c}\underset{6}{\underbrace{2\cdot 3}}\cdot 5 \\ 2\cdot\underset{15}{\underbrace{3\cdot 5}}\end{array}\nonumber\]

    Obtain the LCM with Monomials

    We use the same method as in Example 8.3.1 , but now with variables.

    Example 8.3.2

    Find the \(LCM(4x^2y^5, 6x^4y^3z^6)\).

    Solution

    Find the prime factorization of each expression in your set.

    \[\begin{aligned}4x^2y^5&=2^2x^2y^5 \\ 6x^4y^3z^6&=2\cdot 3\cdot x^4y^3z^6\end{aligned}\]

    Next, take one of each factor and, for repeated factors, take the highest exponent. Hence, the \(\text{LCM}(4x^2y^5 , 6x^4y^3z^6 ) = 2^2\cdot 3\cdot x^4 \cdot y^5\cdot z^6 = 12x^4y^3 z^6\). Notice we take the highest exponent of repeated factors so that all factors are contained in the LCM.

    Obtain the LCM with Polynomials

    We use the same method, but now we factor using factoring techniques to obtain the LCM between polynomials. Recall, all factors are contained in the LCM.

    Example 8.3.3

    Find the \(\text{LCM}(x^2 + 2x − 3,\: x^2 − x − 12)\).

    Solution

    Find the prime factorization of each expression in your set.

    \[\begin{aligned}x^2+2x-3&=(x+3)(x-1) \\ x^2-x-12&=(x-4)(x+3)\end{aligned}\]

    Next, take one of each factor and, for repeated factors, take the highest exponent. Hence, the \(\text{LCM}(x^2 + 2x − 3,\: x^2 − x − 12) = (x − 1)(x + 3)(x − 4)\). Notice all factors are contained in the LCM:

    \[\begin{array}{c}\underset{x^2+2x-3}{\underbrace{(x-1)(x+3)}}(x-4) \\ (x-1)\underset{x^2-x-12}{\underbrace{(x+3)(x-4)}}\end{array}\nonumber\]

    Example 8.3.4

    Find the \(\text{LCM}(x^2 − 10x + 25,\: x^2 − 14x + 45)\).

    Solution

    Find the prime factorization of each expression in your set.

    \[\begin{aligned}x^2-10x+25&=(x-5)^2 \\ x^2-14x+45&=(x-5)(x-9)\end{aligned}\]

    Next, take one of each factor and, for repeated factors, take the highest exponent. Hence, the \(\text{LCM}(x^2 − 10x + 25,\: x^2 − 14x + 45) = (x − 5)^2 (x − 9)\).

    Once we obtain the LCM of polynomial expressions, then this LCM can be used as the LCD in given rational expressions. We can then rewrite each fraction with the LCD. Recall, the LCD is the LCM of all denominators in the expression.

    Rewrite Fractions with the Lowest Common Denominator

    Example 8.3.5

    Find the LCD between \(\dfrac{5a}{4b^3c}\) and \(\dfrac{3c}{6a^2b}\). Rewrite each fraction with the LCD.

    Solution

    If we need to obtain the LCD, then we can follow a series of steps.

    Step 1. Find the LCD, i.e., the LCM between denominators. In this case, we need to find the \(\text{LCM}(4b^3c,\: 6a^2b)\). \[\begin{aligned}4b^3c&=2^2\cdot b^3c \\ 6a^2b&=2\cdot 3\cdot a^2b\end{aligned}\] We can see that the \(\text{LCM}(4b^3c,\: 6a^2b)=2^2\cdot 3\cdot a^2\cdot b^3\cdot c=12a^2b^3c\). This is the LCD.

    Step 2. Next, we rewrite each fraction with the LCD. \[\begin{array}{rl}\dfrac{5a}{4b^3c}&\text{Multiply the numerator and denominator by }3a^2 \\ \dfrac{5a}{4b^3c}\cdot\color{blue}{\dfrac{3a^2}{3a^2}}&\color{black}{}\text{Notice we get }12a^2b^3c\text{ in the denominator} \\ \dfrac{15a^3}{12a^2b^3c}&\text{The denominator is the LCD }\checkmark \\ \\ \dfrac{3c}{6a^2b}&\text{Multiply the numerator and denominator by }2b^2c \\ \dfrac{3c}{6a^2b}\cdot\color{blue}{\dfrac{2b^2c}{2b^2c}}&\color{black}{}\text{Notice we get }12a^2b^3c\text{ in the denominator} \\ \dfrac{6b^2c^2}{12a^2b^3c}&\text{The denominator is the LCD }\checkmark\end{array}\nonumber\] Hence, \(\dfrac{5a}{4b^3c}\) and \(\dfrac{3c}{6a^2b}\) can be written in the equivalent form with the \(\text{LCD}=12a^2b^3c\) as \[\dfrac{15a^3}{12a^2b^3c}\quad\text{and}\quad\dfrac{6b^2c^2}{12a^2b^3c},\nonumber\] respectively.

    Example 8.3.6

    Find the LCD between \(\dfrac{5x}{x^2-5x-6}\) and \(\dfrac{x-2}{x^2+4x+3}\). Rewrite each fraction with the LCD.

    Solution

    If we need to obtain the LCD, then we can follow a series of steps.

    Step 1. Find the LCD, i.e., the LCM between denominators. In this case, we need to find the \(\text{LCM}(x^2 − 5x − 6,\: x^2 + 4x + 3)\). \[\begin{aligned}x^2-5x-6&=(x+1)(x-6) \\ x^2+4x+3&=(x+3)(x+1)\end{aligned}\] We can see that the \(\text{LCM}(x^2 − 5x − 6,\: x^2 + 4x + 3) = (x + 3)(x + 1)(x − 6)\). This is the LCD.

    Step 2. Next, we rewrite each fraction with the LCD. \[\begin{array}{rl}\dfrac{5x}{x^2-5x-6}&\text{Factor the denominator} \\ \dfrac{5x}{(x+1)(x-6)}&\text{Multiply the numerator and denominator by }(x+3) \\ \dfrac{5x}{(x+1)(x-6)}\cdot\color{blue}{\dfrac{(x+3)}{(x+3)}}&\color{black}{}\text{Notice we get the LCD in the denominator} \\ \dfrac{5x(x+3)}{(x+1)(x-6)(x+3)}&\text{The denominator is the LCD }\checkmark \\ \\ \dfrac{x-2}{x^2+4x+3}&\text{Factor the denominator} \\ \dfrac{(x-2)}{(x+3)(x+1)}&\text{Multiply the numerator and denominator by }(x-6) \\ \dfrac{(x-2)}{(x+3)(x+1)}\cdot\color{blue}{\dfrac{(x-6)}{(x-6)}}&\color{black}{}\text{Notice we get the LCD in the denominator} \\ \dfrac{(x-2)(x-6)}{(x+3)(x+1)(x-6)}&\text{The denominator is the LCD }\checkmark\end{array}\nonumber\] Hence, \(\dfrac{5x}{x^2-5x-6}\) and \(\dfrac{x-2}{x^2+4x+3}\) can be written in the equivalent from with the \(\text{LCD}=(x+3)(x+1)(x-6)\) as \[\dfrac{5x(x+3)}{(x+1)(x-6)(x+3)}\quad\text{and}\quad\dfrac{(x-2)(x-6)}{(x+3)(x+1)(x-6)},\nonumber\] respectively.

    Note

    When the Egyptians began working with fractions, they expressed all fractions as a sum of a unit fraction. Rather than \(\dfrac{4}{5}\), they would write the fraction as the sum, \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{20}\). An interesting problem with this system is this is not a unique representation of \(\dfrac{4}{5}\); \(\dfrac{4}{5}\) is also equal to the sum \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{10}\).

    Obtain the Lowest Common Denominator Homework

    Find the equivalent numerator.

    Exercise 8.3.1

    \(\dfrac{3}{8}=\dfrac{?}{48}\)

    Exercise 8.3.2

    \(\dfrac{a}{x}=\dfrac{?}{xy}\)

    Exercise 8.3.3

    \(\dfrac{2}{3a^3b^2c}=\dfrac{?}{9a^5b^2c^4}\)

    Exercise 8.3.4

    \(\dfrac{2}{x+4}=\dfrac{?}{x^2-16}\)

    Exercise 8.3.5

    \(\dfrac{x-4}{x+2}=\dfrac{?}{x^2+5x+6}\)

    Exercise 8.3.6

    \(\dfrac{a}{5}=\dfrac{?}{5a}\)

    Exercise 8.3.7

    \(\dfrac{5}{2x^2}=\dfrac{?}{8x^3y}\)

    Exercise 8.3.8

    \(\dfrac{4}{3a^5b^2c^4}=\dfrac{?}{9a^5b^2c^4}\)

    Exercise 8.3.9

    \(\dfrac{x+1}{x-3}=\dfrac{?}{x^2-6x+9}\)

    Exercise 8.3.10

    \(\dfrac{x-6}{x+3}=\dfrac{?}{x^2-2x-15}\)

    Find the lowest common multiple.

    Exercise 8.3.11

    \(2a^3,\: 6a^4b^2,\: 4a^3b^5\)

    Exercise 8.3.12

    \(x^2-3x,\: x-3,\: x\)

    Exercise 8.3.13

    \(x+2,\: x-4\)

    Exercise 8.3.14

    \(x^2-25,\: x+5\)

    Exercise 8.3.15

    \(x^2+3x+2,\: x^2+5x+6\)

    Exercise 8.3.16

    \(5x^2y,\: 25x^3y^5z\)

    Exercise 8.3.17

    \(4x-8,\: x-2,\: 4\)

    Exercise 8.3.18

    \(x,\: x-7,\: x+1\)

    Exercise 8.3.19

    \(x^2-9,\: x^2-6x+9\)

    Exercise 8.3.20

    \(x^2-7x+10,\: x^2-2x-15,\: x^2+x-6\)

    Find the LCD and rewrite each fraction with the LCD.

    Exercise 8.3.21

    \(\dfrac{3a}{5b^2},\:\dfrac{2}{10a^3b}\)

    Exercise 8.3.22

    \(\dfrac{x+2}{x-3},\:\dfrac{x-3}{x+2}\)

    Exercise 8.3.23

    \(\dfrac{x}{x^2-16},\:\dfrac{3x}{x^2-8x+16}\)

    Exercise 8.3.24

    \(\dfrac{x+1}{x^2-36},\:\dfrac{2x+3}{x^2+12x+36}\)

    Exercise 8.3.25

    \(\dfrac{4x}{x^2-x-6},\:\dfrac{x+2}{x-3}\)

    Exercise 8.3.26

    \(\dfrac{3x}{x-4},\:\dfrac{2}{x+2}\)

    Exercise 8.3.27

    \(\dfrac{5}{x^2-6x},\:\dfrac{2}{x},\:\dfrac{-3}{x-6}\)

    Exercise 8.3.28

    \(\dfrac{5x+1}{x^2-3x-10},\:\dfrac{4}{x-5}\)

    Exercise 8.3.29

    \(\dfrac{3x+1}{x^2-x-12},\:\dfrac{2x}{x^2+4x+3}\)

    Exercise 8.3.30

    \(\dfrac{3x}{x^2-6x+8},\:\dfrac{x-2}{x^2+x-20},\:\dfrac{5}{x^2+3x-10}\)


    This page titled 8.3: Obtain the Lowest Common Denominator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Darlene Diaz (ASCCC Open Educational Resources Initiative) via source content that was edited to the style and standards of the LibreTexts platform.