Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.1: Sequences

( \newcommand{\kernel}{\mathrm{null}\,}\)

Definition

Let {ai}iI be a sequence of real numbers. We say {ai}iI converges, and has limit L, if for every real number ϵ>0 there exists an integer N such that

|aiL|<ϵ whenever i>N.

We say a sequence {ai}iI which does not converge diverges.

Definitions: nondecreasing and nonincreasing sequences
  • We say a sequence {ai}iI is nondecreasing if ai+1ai for every iI and increasing if ai+1>ai for every iI.
  • We say a sequence {ai}iI is nonincreasing if ai+1ai for every iI and decreasing if ai+1<ai for every iI.
Definition: bounded sequences

We say a set AR is bounded if there exists a real number M such that |a|M for every aA. We say a sequence {ai}iI of real numbers is bounded if there exists a real number M such that |ai|M for all iI.

Theorem 2.1.1

If {ai}iI is a nondecreasing, bounded sequence of real numbers, then {ai}iI converges.

Proof

Since {ai}iI is bounded, the set of A={ai:iI} has a supremum. Let L=sup For any \epsilon>0, there must exist N \in I such that a_{N}>L-\epsilon (or else L-\epsilon would be an upper bound for A which is smaller than L ). But then

L-\epsilon<a_{N} \leq a_{i} \leq L<L+\epsilon

for all i \geq N, that is,

\left|a_{i}-L\right|<\epsilon

for all i \geq N . Thus \left\{a_{i}\right\}_{i \in I} converges and

L=\lim _{i \rightarrow \infty} a_{i}.

Q.E.D.

We conclude from the previous theorem that every nondecreasing sequence of real numbers either has a limit or is not bounded, that is, is unbounded.

Exercise \PageIndex{1}

Show that a nonincreasing, bounded sequence of real numbers must converge.

Definition

Let \left\{a_{i}\right\}_{i \in I} be a sequence of real numbers. If for every real number M there exists an integer N such that a_{i}>M whenever i>N, then we say the sequence \left\{a_{i}\right\}_{i \in I} diverges to positive infinity, denoted by

\lim _{i \rightarrow \infty} a_{i}=+\infty.

Similarly, if for every real number M there exists an integer N such that a_{i}<M whenever i>N, then we say the sequence \left\{a_{i}\right\}_{i \in I} diverges to negative infinity, denoted by

\lim _{i \rightarrow \infty} a_{i}=-\infty.

Exercise \PageIndex{2}

Show that a nondecreasing sequence of real numbers either converges or diverges to positive infinity.

Exercise \PageIndex{3}

Show that a nonincreasing sequence of real numbers either converges or diverges to negative infinity.

2.1.1 Extended Real Numbers

It is convenient to add the symbols +\infty and -\infty to the real numbers \mathbb{R} . Although neither +\infty nor -\infty is a real number, we agree to the following operational conventions:

1. Given any real number r,-\infty<r<\infty.

2. For any real number r,

r+(+\infty)=r-(-\infty)=r+\infty=+\infty,

r+(-\infty)=r-(+\infty)=r-\infty=-\infty,

and

\frac{r}{+\infty}=\frac{r}{-\infty}=0.

3. For any real number r>0, r \cdot(+\infty)=+\infty and r \cdot(-\infty)=-\infty.

4. For any real number r<0, r \cdot(+\infty)=-\infty and r \cdot(-\infty)=+\infty.

5. If a_{i}=-\infty, i=1,2,3, \ldots, then \lim _{i \rightarrow \infty} a_{i}=-\infty.

6. If a_{i}=+\infty, i=1,2,3, \ldots, then \lim _{i \rightarrow \infty} a_{i}=+\infty.

Note that with the order relation defined in this manner, +\infty is an upper

bound and -\infty is a lower bound for any set A \subset \mathbb{R}. Thus if A \subset \mathbb{R} does not have a finite upper bound, then \sup A=+\infty ; similarly, if A \subset \mathbb{R} does not have a finite lower bound, then inf A=-\infty.

When working with extended real numbers, we refer to the elements of \mathbb{R} as finite real numbers and the elements +\infty and -\infty as infinite real numbers.

Exercise \PageIndex{4}

Do the extended real numbers form a field?

2.1.2 Limit Superior and Inferior

Definition

Let \left\{a_{i}\right\}_{i \in I} be a sequence of real numbers and, for each i \in I, let u_{i}=\sup \left\{a_{j}: j \geq i\right\} . If u_{i}=+\infty for every i \in I, we let

\limsup _{i \rightarrow \infty} a_{i}=+\infty;

otherwise, we let

\limsup _{i \rightarrow \infty} a_{i}=\inf \left\{u_{i}: i \in I\right\}.

In either case, we call \liminf _{n \rightarrow \infty} a_{n} the limit inferior of the sequence \left\{a_{i}\right\}_{i \in I}.

Exercise \PageIndex{5}

Given a sequence \left\{a_{i}\right\}_{i \in I}, define \left\{u_{i}\right\}_{i \in I} and \left\{l_{i}\right\}_{i \in I} as in the previous two definitions. Show that

\limsup _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} u_{i}

and

\liminf _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} l_{i}.

Exercise \PageIndex{6}

Find \limsup _{i \rightarrow \infty} a_{i} and \liminf _{i \rightarrow \infty} a_{i} for the sequences \left\{a_{i}\right\}_{i=1}^{\infty} as de fined below.

a. a_{i}=(-1)^{i}

b. a_{i}=i

c. a_{i}=2^{-i}

d. a_{i}=\frac{1}{i}

The following proposition is often called the squeeze theorem.

Proposition \PageIndex{2}

Suppose \left\{a_{i}\right\}_{i \in I},\left\{b_{j}\right\}_{j \in J}, and \left\{c_{k}\right\}_{k \in K} are sequences of real numbers for which there exists an integer N such that a_{i} \leq c_{i} \leq b_{i} whenever i>N . If

\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{i},

then

\lim _{i \rightarrow \infty} c_{i}=\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{i}.

Proof

Let L=\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{i} . Suppose L is finite. Given \epsilon>0, there exists an integer M such that

\left|a_{i}-L\right|<\frac{\epsilon}{3}

and

\left|b_{i}-L\right|<\frac{\epsilon}{3}

whenever i>M . Then

\left|a_{i}-b_{i}\right| \leq\left|a_{i}-L\right|+\left|L-b_{i}\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2 \epsilon}{3}

whenever i>M . Let K be the larger of N and M . Then

\left|c_{i}-L\right| \leq\left|c_{i}-b_{i}\right|+\left|b_{i}-L\right| \leq\left|a_{i}-b_{i}\right|+\left|b_{i}-L\right|<\frac{2 \epsilon}{3}+\frac{\epsilon}{3}=\epsilon

whenever i>K . Thus lim c_{i}=L . The result when L is infinite is a consequence of the next two exercises. \quad Q.E.D.

Exercise \PageIndex{7}

Suppose \left\{a_{i}\right\}_{i \in I} and \left\{c_{k}\right\}_{k \in K} are sequences for which there exists an integer N such that a_{i} \leq c_{i} whenever i>N . Show that if \lim _{i \rightarrow \infty} a_{i}=+\infty, then \lim _{i \rightarrow \infty} c_{i}=+\infty .

Exercise \PageIndex{8}

Suppose \left\{b_{j}\right\}_{j \in J} and \left\{c_{k}\right\}_{k \in K} are sequences for which there exists an integer N such that c_{i} \leq b_{i} whenever i>N . Show that if \lim _{i \rightarrow \infty} b_{i}=-\infty, then \lim _{i \rightarrow \infty} c_{i}=-\infty .

Exercise \PageIndex{9}

Suppose \left\{a_{i}\right\}_{i \in I} and \left\{b_{j}\right\}_{j \in J} are sequences of real numbers with a_{i} \leq b_{i} for all i larger than some integer N . Assuming both sequences converge, show that

\lim _{\mathfrak{i} \rightarrow \infty} a_{i} \leq \lim _{i \rightarrow \infty} b_{i}.

Exercise \PageIndex{10}

Show that for any sequence \left\{a_{i}\right\}_{i \in I},

\liminf _{i \rightarrow \infty} a_{i} \leq \limsup _{i \rightarrow \infty} n_{i}.

Proposition \PageIndex{3}

Suppose \left\{a_{i}\right\}_{i \in I} is a sequence for which

\limsup _{i \rightarrow \infty} a_{i}=\liminf _{i \rightarrow \infty} a_{i}.

Then

\lim _{i \rightarrow \infty} a_{i}=\limsup _{i \rightarrow \infty} a_{i}=\liminf _{i \rightarrow \infty} a_{i}.

Proof

Let u_{i}=\sup \left\{a_{k}: k \geq i\right\} and l_{i}=\inf \left\{a_{k}: k \geq i\right\} . Then l_{i} \leq a_{i} \leq u_{i} for all i \in I . Now

\lim _{i \rightarrow \infty} l_{i}=\liminf _{i \rightarrow \infty} a_{i}=\limsup _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} u_{i},

so the result follows from the squeeze theorem. \quad Q.E.D.

Exercise \PageIndex{11}

Suppose u is a real number such that u \geq 0 and u<\epsilon for any real number \epsilon>0 . Show that u=0.

2.1.3 Completeness

Definition

Suppose \left\{a_{i}\right\}_{i \in I} is a sequence in \mathbb{R} . We call \left\{a_{i}\right\}_{i \in I} a Cauchy sequence if for every \epsilon>0 there exists an integer N such that

\left|a_{i}-a_{j}\right|<\epsilon

whenever both i>N and j>N.

Theorem \PageIndex{4}

Suppose \left\{a_{i}\right\}_{i \in I} is a Cauchy sequence in \mathbb{R} . Then \left\{a_{i}\right\}_{i \in I} converges to a limit L \in \mathbb{R}.

Proof

Let u_{i}=\sup \left\{a_{k}: k \geq i\right\} and l_{i}=\inf \left\{a_{k}: k \geq i\right\} . Given any \epsilon>0, there exists N \in \mathbb{Z} such that \left|a_{i}-a_{j}\right|<\epsilon for all i, j>N . Thus, for all i, j>N, a_{i}<a_{j}+\epsilon_{1} and so

a_{i} \leq \inf \left\{a_{j}+\epsilon: j \geq i\right\}=l_{i}+\epsilon

for all i>N . Since \left\{l_{i}\right\}_{i \in I} is a nondecreasing sequence,

a_{i} \leq \sup \left\{l_{i}+\epsilon: i \in I\right\}=\liminf _{i \rightarrow \infty} a_{i}+\epsilon

for all i>N . Hence

u_{i}=\sup \left\{a_{k}: k \geq i\right\} \leq \liminf _{i \rightarrow \infty} a_{i}+\epsilon

for all i>N . Thus

\limsup _{i \rightarrow \infty} a_{i}=\inf \left\{u_{i}: i \in I\right\} \leq \liminf _{i \rightarrow \infty} a_{i}+\epsilon.

Since \liminf _{i \rightarrow \infty} a_{i} \leq \limsup _{i \rightarrow \infty} a_{i}, it follows that

\left|\limsup _{i \rightarrow \infty} a_{i}-\liminf _{i \rightarrow \infty} a_{i}\right| \leq \epsilon.

since this is true for every \epsilon>0, we have \lim \sup _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \inf a_{i}, and so \left\{a_{i}\right\}_{i \in I} converges by Proposition 2.1 .3 . \quad Q.E.D.

As a consequence of the previous theorem, we say that \mathbb{R} is a complete metric space.

Exercise \PageIndex{12}

Suppose A \subset \mathbb{R}, A \neq \emptyset, and s=\sup A . Show that there exists a sequence \left\{a_{i}\right\}_{i=1}^{\infty} with a_{i} \in A such that \lim _{i \rightarrow \infty} a_{i}=s.

Exercise \PageIndex{13}

Given a real number x \geq 0, show that there exists a real number s \geq 0 such that s^{2}=x.

We let \sqrt{x} denote the number s in the previous exercise, the square root of x.

2.1.4 Some Basic Results About Sequences
Proposition \PageIndex{5}

Suppose \left\{x_{i}\right\}_{i \in I} is a convergent sequence in \mathbb{R}, \alpha is a real number, and L=\lim _{i \rightarrow \infty} x_{i} . Then the sequence \left\{\alpha x_{i}\right\}_{i \in I} oonverges and

\lim _{i \rightarrow \infty} \alpha x_{i}=\alpha L.

Proof

If \alpha=0, then \left\{\alpha x_{i}\right\}_{i \in I} clearly converges to 0 . So assume \alpha \neq 0 . Given \epsilon>0, choose an integer N such that

\left|x_{i}-L\right|<\frac{\epsilon}{|\alpha|}

whenever i>N . Then for any i>N we have

\left|\alpha x_{i}-\alpha L\right|=|\alpha|\left|x_{i}-L\right|<|\alpha| \frac{\epsilon}{|\alpha|}=\epsilon.

Thus \lim _{i \rightarrow \infty} \alpha x_{i}=\alpha L. \quad Q.E.D.

Proposition \PageIndex{6}

Suppose \left\{x_{i}\right\}_{i \in I} and \left\{y_{i}\right\}_{i \in I} are convergent sequences in \mathbb{R} with L=\lim _{i \rightarrow \infty} x_{i} and M=\lim _{i \rightarrow \infty} y_{i} . Then the sequence \left\{x_{i}+y_{i}\right\}_{i \in I} converges and

\lim _{i \rightarrow \infty}\left(x_{i}+y_{i}\right)=L+M.

Exercise \PageIndex{14}

Prove the previous proposition.

Proposition \PageIndex{7}

Suppose \left\{x_{i}\right\}_{i \in I} and \left\{y_{i}\right\}_{i \in I} are convergent sequences in \mathbb{R} with L=\lim _{i \rightarrow \infty} x_{i} and M=\lim _{i \rightarrow \infty} y_{i} . Then the sequence \left\{x_{i} y_{i}\right\}_{i \in I} converges and

\lim _{i \rightarrow \infty} x_{i} y_{i}=L M.

Exercise \PageIndex{15}

Prove the previous proposition.

Proposition \PageIndex{8}

Suppose \left\{x_{i}\right\}_{i \in I} and \left\{y_{i}\right\}_{i \in I} are convergent sequences in \mathbb{R} with L=\lim _{i \rightarrow \infty} x_{i}, M=\lim _{i \rightarrow \infty} y_{i}, and y_{i} \neq 0 for all i \in I . If M \neq 0, then the sequence \left\{\frac{x_{i}}{y_{i}}\right\}_{i \in I} converges and

\lim _{i \rightarrow \infty} \frac{x_{i}}{y_{i}}=\frac{L}{M}.

Proof

Since M \neq 0 and M=\lim _{i \rightarrow \infty} y_{i}, we may choose an integer N such that

\left|y_{i}\right|>\frac{|M|}{2}

whenever i>N . Let B be an upper bound for \left\{\left|x_{i}\right|: i \in I\right\} \cup\left\{\left|y_{i}\right|: i \in I\right\} . Given any \epsilon>0, we may choose an integer P such that

\left|x_{i}-L\right|<\frac{M^{2} \epsilon}{4 B}

and

\left|y_{i}-M\right|<\frac{M^{2} \epsilon}{4 B}

whenever i>P . Let K be the larger of N and P . Then, for any i>K, we have

\begin{aligned}\left|\frac{x_{i}}{y_{i}}-\frac{L}{M}\right| &=\frac{\left|x_{i} M-y_{i} L\right|}{\left|y_{i} M\right|} \\ &=\frac{\left|x_{i} M-x_{i} y_{i}+x_{i} y_{i}-y_{i} L\right|}{\left|y_{i} M\right|} \\ & \leq \frac{\left|x_{i}\right|\left|M-y_{i}\right|+\left|y_{i}\right|\left|x_{i}-L\right|}{\left|y_{i} M\right|} \\ &<\frac{B \frac{M^{2} \epsilon}{4 B}+B \frac{M^{2} \epsilon}{4 B}}{\frac{M^{2}}{2}} \\ &=\epsilon . \end{aligned}

Thus

\lim _{i \rightarrow \infty} \frac{x_{i}}{y_{i}}=\frac{L}{M}.

Q.E.D.

Exercise \PageIndex{16}

a. Show that \lim _{n \rightarrow \infty} \frac{1}{n}=0.

b. Show that \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0 by (i) using the definition of limit directly and then (ii) using previous results.

Exercise \PageIndex{17}

Show that for any positive integer k,

\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0.

Example \PageIndex{1}

We may combine the properties of this section to compute

\begin{aligned} \lim _{n \rightarrow \infty} \frac{5 n^{3}+3 n-6}{2 n^{3}+2 n^{2}-7} &=\lim _{n \rightarrow \infty} \frac{5+\frac{3}{n^{2}}-\frac{6}{n^{3}}}{2+\frac{2}{n}-\frac{7}{n^{3}}} \\ &=\frac{\lim _{n \rightarrow \infty} 5+3 \lim _{n \rightarrow \infty} \frac{1}{n^{2}}-6 \lim _{n \rightarrow \infty} \frac{1}{n^{3}}}{\lim _{n \rightarrow \infty} 2+2 \lim _{n \rightarrow \infty} \frac{1}{n}-7 \lim _{n \rightarrow \infty} \frac{1}{n^{3}}} \\ &=\frac{5+0+0}{2+0+0} \\ &=\frac{5}{2}. \end{aligned}

Exercise \PageIndex{18}

Evaluate

\lim _{n \rightarrow \infty} \frac{3 n^{5}+8 n^{3}-6 n}{8 n^{5}+2 n^{4}-31},

carefully showing each step.

Proposition \PageIndex{9}

Suppose \left\{x_{i}\right\}_{i \in I} is a convergent sequence of nonnegative real numbers with L=\lim _{i \rightarrow \infty} x_{i} . Then the sequence \{\sqrt{x_{i}}\}_{i \in I} converges and

\lim _{i \rightarrow \infty} \sqrt{x_{i}}=\sqrt{L}.

Proof

Let \epsilon>0 be given. Suppose L>0 and note that

\left|x_{i}-L\right|=|\sqrt{x_{i}}-\sqrt{L}||\sqrt{x_{i}}+\sqrt{L}|

implies that

|\sqrt{x_{i}}-\sqrt{L}|=\frac{\left|x_{i}-L\right|}{|\sqrt{x_{i}}+\sqrt{L}|}

for any i \in I . Choose an integer N such that

\left|x_{i}-L\right|<\sqrt{L} \epsilon

whenever i>N . Then, for any i>N,

|\sqrt{x_{i}}-\sqrt{L}|=\frac{\left|x_{i}-L\right|}{|\sqrt{x_{i}}+\sqrt{L}|}<\frac{\sqrt{L} \epsilon}{\sqrt{L}}=\epsilon.

Hence \lim _{i \rightarrow \infty} \sqrt{x_{i}}=\sqrt{L}.

If L=0, \lim _{i \rightarrow \infty} x_{i}=0, so we may choose an integer N such that \left|x_{i}\right|<\epsilon^{2} for all i>N . Then

|\sqrt{x_{i}}|<\epsilon

whenever i>N, so \lim _{i \rightarrow \infty} \sqrt{x_{i}}=0. \quad Q.E.D.

Exercise \PageIndex{19}

Evaluate

\lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{2}+1}}{5 n+6},

carefully showing each step.

Exercise \PageIndex{20}

Given real numbers r>0 and \alpha, show that (\mathrm{a}) \alpha r<r if 0<\alpha<1 and (\mathrm{b}) r<\alpha r if \alpha>1.

Proposition \PageIndex{10}

If x \in \mathbb{R} and |x|<1, then

\lim _{n \rightarrow \infty} x^{n}=0.

Proof

We first assume x \geq 0. Then the sequence \left\{x^{n}\right\}_{n=1}^{\infty} is nonincreasing and bounded below by 0. Hence the sequence converges. Let L=\lim _{n \rightarrow \infty} x^{n} . Then

L=\lim _{n \rightarrow \infty} x^{n}=x \lim _{n \rightarrow \infty} x^{n-1}=x L,

from which it follows that L(1-x)=0 . since 1-x>0, we must have L=0. The result for x<0 follows from the next exercise. \quad Q.E.D.

Exercise \PageIndex{21}

Show that \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 if and only if \lim _{n \rightarrow \infty} a_{n}=0.

2.1.5 Subsequences
Definition

Given a sequence \left\{x_{i}\right\}_{i=m}^{\infty}, suppose \left\{n_{k}\right\}_{k=1}^{\infty} is an increasing sequence of integers with

m \leq n_{1}<n_{2}<n_{3}<\cdots .

Then we call the sequence \left\{x_{n_{k}}\right\}_{k=1}^{\infty} a subsequence of \left\{x_{i}\right\}_{i=m}^{\infty} .

Example \PageIndex{2}

The sequence \left\{x_{2 k}\right\}_{k=1}^{\infty} is a subsequence of the sequence \left\{x_{i}\right\}_{i=1}^{\infty} . For example, \left\{\frac{1}{2 i}\right\}_{i=1}^{\infty} is a subsequence of \left\{\frac{1}{i}\right\}_{i=1}^{\infty}.

Exercise \PageIndex{22}

Suppose \left\{x_{i}\right\}_{i=m}^{\infty} converges with \lim _{i \rightarrow \infty} x_{i}=L . Show that every subsequence \left\{x_{n_{k}}\right\}_{k=1}^{\infty} of \left\{x_{i}\right\}_{i=m}^{\infty} also converges and \lim _{k \rightarrow \infty} x_{n_{k}}=L.

Exercise \PageIndex{23}

Suppose \left\{x_{i}\right\}_{i=m}^{\infty} diverges to +\infty . Show that every subsequence \left\{x_{n_{k}}\right\}_{k=1}^{\infty} of \left\{x_{i}\right\}_{i=m}^{\infty} also diverges to +\infty.

Exercise \PageIndex{24}

Suppose \left\{x_{i}\right\}_{i=m}^{\infty} diverges to -\infty . Show that every subsequence \left\{x_{n_{k}}\right\}_{k=1}^{\infty} of \left\{x_{i}\right\}_{i=m}^{\infty} also diverges to -\infty.

Definition

Given a sequence \left\{x_{i}\right\}_{i=m}^{\infty}, we call any extended real number \lambda which is the limit of a subsequence of \left\{x_{i}\right\}_{i=m}^{\infty} a subsequential limit of \left\{x_{i}\right\}_{i=m}^{\infty}.

Example \PageIndex{3}

-1 and 1 are both subsequential limits of \left\{(-1)^{i}\right\}_{i=0}^{\infty}.

Exercise \PageIndex{25}

Suppose the sequence \left\{x_{i}\right\}_{i=m}^{\infty} is not bounded. Show that either -\infty or +\infty is a subsequential limit of \left\{x_{i}\right\}_{i=m}^{\infty} ..

Proposition \PageIndex{11}

Suppose \Lambda is the set of all subsequential limits of the sequence \left\{x_{i}\right\}_{i=m}^{\infty} . Then \Lambda \neq \emptyset.

Proof

By the previous exercise, the proposition is true if \left\{x_{i}\right\}_{i=m}^{\infty} is not bounded. So suppose \left\{x_{i}\right\}_{i=m}^{\infty} is bounded and choose real numbers a and b such that a \leq x_{i} \leq b for all i \geq m. Construct sequences \left\{a_{i}\right\}_{i=1}^{\infty} and \left\{b_{i}\right\}_{i=1}^{\infty} as follows: Let a_{1}=a and b_{1}=b. For i \geq 1, let

c=\frac{a_{i-1}+b_{i-1}}{2}.

If there exists an integer N such that a_{i-1} \leq x_{j} \leq c for all j>N, let a_{i}=a_{i-1} and b_{i}=c ; otherwise, let a_{i}=c and b_{i}=b_{i-1} . Let n_{1}=m and, for k=2,3,4, \ldots, let n_{k} be the smallest integer for which n_{k}>n_{k-1} and a_{k} \leq x_{n_{k}} \leq b_{k} Then \left\{x_{n_{k}}\right\}_{k=1}^{\infty} is a Cauchy sequence which is a subsequence of \left\{x_{i}\right\}_{i=m}^{\infty} . Thus \left\{x_{n_{k}}\right\}_{k=1}^{\infty} converges and \Lambda \neq 0 . \quad Q.E.D.

Exercise \PageIndex{26}

Suppose A \subset \mathbb{R} and B \subset \mathbb{R} with a \leq b for every a \in A and b \in B . Show that \sup A \leq \inf B.

Proposition \PageIndex{12}

Let \Lambda be the set of subsequential limits of a sequence \left\{x_{i}\right\}_{i=m}^{\infty} . Then

\limsup _{i \rightarrow \infty} x_{i}=\sup \Lambda .

Proof

Let s=\sup \Lambda and, for i \geq m, u_{i}=\sup \left\{x_{j}: j \geq i\right\} . Now since x_{j} \leq u_{i} for all j \geq i, it follows that \lambda \leq u_{i} for every \lambda \in \Lambda and i \geq m . Hence, from the previous exercise, s \leq \inf \left\{u_{i}: i \geq m\right\}=\limsup _{i \rightarrow \infty} x_{i}.

Now suppose s<\limsup _{i \rightarrow \infty} x_{i}. Then there exists a real number t such that s<t<\lim \sup _{i \rightarrow \infty} x_{i} . In particular, t<u_{i} for every i \geq m . Let n_{1} be the smallest integer for which n_{1} \geq m and x_{n_{1}}>t . For k=2,3,4, \ldots, let n_{k} be the smallest integer for which n_{k}>n_{k-1} and x_{n_{k}}>t . Then \left\{x_{n_{k}}\right\}_{k=1}^{\infty} is a subsequence of \left\{x_{i}\right\}_{i=m}^{\infty} which has a subsequential limit \lambda \geq t. Since \lambda is also then a subsequential limit of \left\{x_{i}\right\}_{i=m}^{\infty}, we have \lambda \in \Lambda and \lambda \geq t>s, contradicting s=\sup \Lambda . Hence we must have \lim \sup _{i \rightarrow \infty} x_{i}=\sup \Lambda . \quad Q.E.D.

Exercise \PageIndex{27}

Let \Lambda be the set of subsequential limits of a sequence \left\{x_{i}\right\}_{i=m}^{\infty} . Show that

\liminf _{i \rightarrow \infty} x_{i}=\inf \Lambda .


This page titled 2.1: Sequences is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?