4.4: Compact Sets
- Page ID
- 22660
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Suppose \(T \subset \mathbb{R} .\) If \(A\) is a set, \(U_{\alpha}\) is an open set for every \(\alpha \in A,\) and
\[T \subset \bigcup_{\alpha \in A} U_{\alpha},\]
then we call \(\left\{U_{\alpha}: \alpha \in A\right\}\) an open cover of \(T\).
For \(n=3,4,5, \dots,\) let
\[U_{n}=\left(\frac{1}{n}, \frac{n-1}{n}\right).\]
Then \(\left\{U_{n}: n=3,4,5, \ldots\right\}\) is an open cover of the open interval \((0,1)\).
Suppose \(\left\{U_{\alpha}: \alpha \in A\right\}\) is an open cover of \(T \subset \mathbb{R} .\) If \(B \subset A\) and
\[T \subset \bigcup_{\beta \in B} U_{\beta},\]
then we call \(\left\{U_{\beta}: \beta \in B\right\}\) a subcover of \(\left\{U_{\alpha}: \alpha \in A\right\} .\) If \(B\) is finite, we call \(\left\{U_{\beta}: \beta \in B\right\}\) a finite subcover of \(\left\{U_{\alpha}: \alpha \in A\right\}\).
Show that the open cover of \((0,1)\) given in the previous example does not have a finite subcover.
We say a set \(K \subset \mathbb{R}\) is compact if every open cover of \(K\) has a finite sub cover.
As a consequence of the previous exercise, the open interval \((0,1)\) is not compact.
Show that every finite subset of \(\mathbb{R}\) is compact.
Suppose \(n \in \mathbb{Z}^{+}\) and \(K_{1}, K_{2}, \ldots, K_{n}\) are compact sets. Show that \(\bigcup_{i=1}^{n} K_{i}\) is compact.
If \(I\) is a closed, bounded interval, then \(I\) is compact.
- Proof
-
Let \(a \leq b\) be finite real numbers and \(I=[a, b] .\) Suppose \(\left\{U_{\alpha}: \alpha \in A\right\}\) is an open cover of \(I .\) Let \(\mathcal{O}\) be the set of sets \(\left\{U_{\beta}: \beta \in B\right\}\) with the properties that \(B\) is a finite subset of \(A\) and \(a \in \bigcup_{\beta \in B} U_{\beta} .\) Let
\[(s-\epsilon, s+\epsilon) \subset U_{\alpha}.\]
Moreover, there exists a \(\left\{U_{\beta}: \beta \in B\right\} \in \mathcal{O}\) for which
\[\left[a, s-\frac{\epsilon}{2}\right] \subset \bigcup_{\beta \in B} U_{\beta}.\]
But then
\[\left\{U_{\beta}: \beta \in B\right\} \cup\left\{U_{\alpha}\right\} \in \mathcal{O}\]
and
\[\left[a, s+\frac{\epsilon}{2}\right] \subset\left(\bigcup_{\beta \in B} U_{\beta}\right) \cup U_{\alpha},\]
contradicting the definition of \(s .\) Hence we must have \(s=b .\) Now choose \(U_{\alpha}\) such that \(b \in U_{\alpha} .\) Then, for some \(\epsilon>0\),
\[(b-\epsilon, b+\epsilon) \subset U_{\alpha}.\]
Moreover, there exists \(\left\{U_{\beta}: \beta \in B\right\} \in \mathcal{O}\) such that
\[\left[a, b-\frac{\epsilon}{2}\right] \subset \bigcup_{\beta \in B} U_{\beta}.\]
Then
\[\left\{U_{\beta}: \beta \in B\right\} \cup\left\{U_{\alpha}\right\} \in \mathcal{O}\]
is a finite subcover of \(I .\) Thus \(I\) is compact. \(\quad\) Q.E.D.
If \(K\) is a closed, bounded subset of \(\mathbb{R},\) then \(K\) is compact.
- Proof
-
Since \(K\) is bounded, there exist finite real numbers \(a\) and \(b\) such that \(K \subset[a, b] .\) Let \(\left\{U_{\alpha}: \alpha \in A\right\}\) be an open cover of \(K .\) Let \(V=\mathbb{R} \backslash K .\) Then
\[\left\{U_{\alpha}: \alpha \in A\right\} \cup\{V\}\]
in the latter case, we have
\[K \subset[a, b] \backslash V \subset \bigcup_{\beta \in B} U_{\beta}.\]
In either case, we have found a finite subcover of \(\left\{U_{\alpha}: \alpha \in A\right\}\). \(\quad\) Q.E.D.
Show that if \(K\) is compact and \(C \subset K\) is closed, then \(C\) is compact.
If \(K \subset \mathbb{R}\) is compact, then \(K\) is closed.
- Proof
-
Suppose \(x\) is a limit point of \(K\) and \(x \notin K .\) For \(n=1,2,3, \ldots,\) let
\[U_{n}=\left(-\infty, x-\frac{1}{n}\right) \cup\left(x+\frac{1}{n},+\infty\right).\]
Then
\[\bigcup_{n=1}^{\infty} U_{n}=(-\infty, x) \cup(x,+\infty) \supset K .\]
However, for any \(N \in \mathbb{Z}^{+},\) there exists \(a \in K\) with
\[a \in\left(x-\frac{1}{N}, x+\frac{1}{N}\right),\]
and hence
\[a \notin \bigcup_{n=1}^{N} U_{n}=\left(-\infty, x-\frac{1}{N}\right) \cup\left(x+\frac{1}{N},+\infty\right).\]
Thus the open cover \(\left\{U_{n}: n \in \mathbb{Z}^{+}\right\}\) does not have a finite subcover, contradicting the assumption that \(K\) is compact. \(\quad\) Q.E.D.
Suppose that for each \(\alpha\) in some set \(A, K_{\alpha}\) is compact. Show that \(\bigcap_{\alpha \in A} K_{\alpha}\) is compact.
If \(K \subset \mathbb{R}\) is compact, then \(K\) is bounded.
- Proof
-
Suppose \(K\) is not bounded. For \(n=1,2,3, \ldots,\) let \(U_{n}=(-n, n) .\) Then
\[\bigcup_{n=1}^{\infty} U_{n}=(-\infty, \infty) \supset K .\]
But, for any integer \(N,\) there exists \(a \in K\) such that \(|a|>N,\) from which it follows that
\[a \notin \bigcup_{n=1}^{N} U_{n}=(-N, N).\]
Thus the open cover \(\left\{U_{n}: n \in \mathbb{Z}^{+}\right\}\) does not have a finite subcover, contradicting the assumption that \(K\) is compact. \(\quad\) Q.E.D.
Taken together, the previous three propositions yield the following fundamental result:
A set \(K \subset \mathbb{R}\) is compact if and only if \(K\) is closed and bounded.
If \(K \subset \mathbb{R}\) is compact and \(\left\{x_{n}\right\}_{n \in I}\) is a sequence with \(x_{n} \in K\) for every \(n \in I,\) then \(\left\{x_{n}\right\}_{n \in I}\) has a convergent subsequence \(\left\{x_{n_{k}}\right\}_{k=1}^{\infty}\) with
\[\lim _{k \rightarrow \infty} x_{n_{k}} \in K .\]
- Proof
-
Since \(K\) is bounded, \(\left\{x_{n}\right\}_{n \in I}\) has a convergent subsequence \(\left\{x_{n_{k}}\right\}_{k=1}^{\infty}\). Since \(K\) is closed, we must have \(\lim _{k \rightarrow \infty} x_{n_{k}} \in K\).
Suppose \(K \subset \mathbb{R}\) is such that whenever \(\left\{x_{n}\right\}_{n \in I}\) is a sequence with \(x_{n} \in K\) for every \(n \in I,\) then \(\left\{x_{n}\right\}_{n \in I}\) has a subsequence \(\left\{x_{n_{k}}\right\}_{k=1}^{\infty}\) with \(\lim _{k \rightarrow \infty} x_{n_{k}} \in K .\) Then \(K\) is compact.
- Proof
-
Suppose \(K\) is unbounded. Then we may construct a sequence \(\left\{x_{n}\right\}_{n=1}^{\infty}\) such that \(x_{n} \in K\) and \(\left|x_{n}\right|>n\) for \(n=1,2,3, \ldots\) Hence the only possible subsequential limits of \(\left\{x_{n}\right\}_{n=1}^{\infty}\) would be \(-\infty\) and \(+\infty,\) contradicting our assumptions. Thus \(K\) must be bounded.
Now suppose \(\left\{x_{n}\right\}_{n \in I}\) is a convergent sequence with \(x_{n} \in K\) for all \(n \in I .\) If \(L=\lim _{n \rightarrow \infty} x_{n},\) then \(L\) is the only subsequential limit of \(\left\{x_{n}\right\}_{n \in I} .\) Hence, by the assumptions of the proposition, \(L \in K .\) Hence \(K\) is closed.
Since \(K\) is both closed and bounded, it is compact. \(\quad\) Q.E.D.
Show that a set \(K \subset \mathbb{R}\) is compact if and only if every infinite subset of \(K\) has a limit point in \(K\).
Show that if \(K\) is compact, then \(\sup K \in K\) and \(\inf K \in K\).
Given a set \(K \subset \mathbb{R},\) the following are equivalent:
1. Every open cover of \(K\) has a finite subcover.
2. Every sequence in \(K\) has a subsequential limit in \(K\).
3. Every infinite subset of \(K\) has a limit point in \(K\).
Suppose \(K_{1}, K_{2}, K_{3}, \ldots\) are nonempty compact sets with
\[K_{n+1} \subset K_{n}\]
for \(n=1,2,3, \ldots\) Show that
\[\bigcap_{n=1}^{\infty} K_{n}\]
is nonempty.
We say a collection of sets \(\left\{D_{\alpha}: \alpha \in A\right\}\) has the finite intersection property if for every finite set \(B \subset A\),
\[\bigcap_{\alpha \in B} D_{\alpha} \neq \emptyset .\]
Show that a set \(K \subset \mathbb{R}\) is compact if and only for any collection
\[\left\{E_{\alpha}: \alpha \in A, E_{\alpha}=C_{\alpha} \cap K \text { where } C_{\alpha} \subset \mathbb{R} \text { is closed }\right\}\]
which has the finite intersection property we have
\[\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset .\]