6.5: L'Hopital's Rule
( \newcommand{\kernel}{\mathrm{null}\,}\)
The following result is one case of l′ l'Hópital's rule.
Suppose a,b∈R,f and g are differentiable on (a,b),g′(x)≠0 for all x∈(a,b), and
limx→a+f′(x)g′(x)=λ.
If limx→a+f(x)=0 and limx→a+g(x)=0, then
limx→a+f(x)g(x)=λ.
- Proof
-
Given ϵ>0, there exists δ>0 such that
λ−ϵ2<f′(x)g′(x)<λ+ϵ2
whenever x∈(a,a+δ). Now, by the Generalized Mean Value Theorem, for any x and y with a<x<y<a+δ, there exists a point c∈(x,y) such that
f(y)−f(x)g(y)−g(x)=f′(c)g′(c).
Hence
λ−ϵ2<f(y)−f(x)g(y)−g(x)<λ+ϵ2.
Now
limx→a+f(y)−f(x)g(y)−g(x)=f(y)g(y)
and so we have
λ−ϵ<λ−ϵ2≤f(y)g(y)≤λ+ϵ2<λ+ϵ
for any y∈(a,a+δ). Hence
limx→a+f(x)g(x)=λ.
Q.E.D.
Use l'Hôpital's rule to compute
limx→0+√1+x−1x.
Suppose a,b∈R,f and g are differentiable on (a,b),g′(x)≠0 for all x∈(a,b), and
limx→b−f′(x)g′(x)=λ.
Show that if limx→b−f(x)=0 and limx→b−g(x)=0, then
limx→b−f(x)g(x)=λ.