4.4: L'Hopital's Rule
- Page ID
- 49116
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We now prove a result that allows us to compute various limits by calculating a related limit involving derivatives. All four theorems in this section are known as L'Hopital's Rule.
For this section, we assume \(a,b \in \mathbb{R}\) with \(a < b\).
Suppose \(f\) and \(g\) are continuous on \([a,b]\) and differentiable on \((a,b)\). Suppose \(f(\bar{x})=g(\bar{x})=0\), where \(\bar{x} \in [a,b]\). Suppose further that there exists \(\delta > 0\) such that \(g^{\prime}(x) \neq 0\) for all \(x \in B(\bar{x} ; \delta) \cap[a, b]\), \(x \neq \bar{x}\).
If
\[\displaystyle \lim _{x \rightarrow \bar{x}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell,\]
then
\[\displaystyle \lim _{x \rightarrow \bar{x}} \frac{f(x)}{g(x)}=\ell.\]
- Proof
-
Let \(\left\{x_{k}\right\}\) be a sequence in \([a,b]\) that converges to \(\bar{x}\) and such that \(x_{k} \neq \bar{x}\) for every \(k\). By Theorem 4.2.4, for each \(k\), there exists a sequence \(\left\{c_{k}\right\}\) between \(c_{k}\) between \(x_{k}\) and \(\bar{x}\), such that
\[\left[f\left(x_{k}\right)-f(\bar{x})\right] g^{\prime}\left(c_{k}\right)=\left[g\left(x_{k}\right)-g(\bar{x})\right] f^{\prime}\left(c_{k}\right).\]
Since \(f(\bar{x})=g(\bar{x})=0\), and \(g^{\prime}\left(c_{k}\right) \neq 0\) for sufficiently large \(k\), we have
\[\frac{f\left(x_{k}\right)}{g\left(x_{k}\right)}=\frac{f^{\prime}\left(c_{k}\right)}{g^{\prime}\left(c_{k}\right)}.\]
Under the assumptions that \(g^{\prime}(x) \neq 0\) for \(x\) near \(\bar{x}\) and \(g(\bar{x})=0\), we also have \(g\left(x_{k}\right) \neq 0\) for sufficiently large \(k\). By the squeeze theorem (Theorem 2.1.6), \(\left\{c_{k}\right\}\) converges to \(\bar{x}\). Thus,
\[\displaystyle \lim _{k \rightarrow \infty} \frac{f\left(x_{k}\right)}{g\left(x_{k}\right)}=\displaystyle \lim _{k \rightarrow \infty} \frac{f^{\prime}\left(c_{k}\right)}{g^{\prime}\left(c_{k}\right)}=\displaystyle \lim _{x \rightarrow \bar{x}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell .\]
Therefore, (4.9) follows from Theorem 3.1.2. \(\square\)
We will use Theorem 4.4.1 to show that \[\displaystyle \lim _{x \rightarrow 0} \frac{2 x+\sin x}{x^{2}+3 x}=1. \nonumber\]
Solution
First we observe that the conditions of Theorem 4.4.1 hold. Here \(f(x)=2 x+\sin x\), \(g(x)=x^{2}+3 x\), and \(\bar{x} = 0\). We may take \([a, b]=[-1,1]\), for example, so that \(f\) and \(g\) are continuous on \([a, b]\) and differentiable on \((a, b)\) and, furthermore, \(\frac{f(x)}{g(x)}\) is well defined on \([a, b] \backslash \{\bar{x}\}\). Moreover, taking \(\delta = 7 / 3\), we get \(g^{\prime}(x)=2 x+3 \neq 0\) for \(x \in B(\bar{x} ; \delta) \cap[a, b]\). Finally we calculate the limit of the quotient of derivatives using Theorem 3.2.1 to get
\[\begin{align*} \displaystyle \lim _{x \rightarrow \bar{x}} \frac{f^{\prime}(x)}{g^{\prime}(x)} & =\displaystyle \lim _{x \rightarrow 0} \frac{2+\cos x}{2 x+3} \\[4pt] &=\frac{\displaystyle \lim _{x \rightarrow 0} 2+\displaystyle \lim _{x \rightarrow 0} \cos x}{\displaystyle \lim _{x \rightarrow 0} 2 x+3} \\[4pt] &=\frac{2+1}{3} \\[4pt] &=1.\end{align*}\]
It now follows from Theorem 4.4.1 that \(\displaystyle \lim _{x \rightarrow 0} \frac{2 x+\sin x}{x^{2}+3 x}=1\) as we wanted to show.
We will apply L'Hospital's rule to determine the limit \[\displaystyle \lim _{x \rightarrow 1} \frac{3 x^{3}-2 x^{2}+4 x-5}{4 x^{4}-2 x-2}.\nonumber\]
Solution
Here \(f(x)=3 x^{3}-2 x^{2}+4 x-5\) and \(g(x)=4 x^{4}-2 x-2\). Thus \(f(1)=g(1)=0\). Moreover, \(f^{\prime}(x)= 9 x^{2}-4 x+4\) and \(g^{\prime}(x)=16 x^{3}-2\). Since \(g^{\prime}(1)=14 \neq 0\) and \(g^{\prime}\) is continuous we have \(g^{\prime}(x) \neq 0\) for \(x\) near \(1\). Now,
\[\displaystyle \lim _{x \rightarrow 1} \frac{9 x^{2}-4 x+4}{16 x^{3}-2}=\frac{9}{14}.\nonumber\]
Thus, the desired limit is \(\frac{9}{14}\) as well.
If the derivatives of the functions \(f\) and \(g\) themselves satisfy the assumptions of Theorem 4.4.1 we may apply L'Hospital's rule to determine first the limit of \(f^{\prime}(x) / g^{\prime}(x)\) and then apply the rule again to determine the original limit.
Solution
Consider the limit
\[\displaystyle \lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}.\nonumber\]
Here \(f(x)=x^{2}\) and \(g(x)=1-\cos x\) so both functions and all its derivatives are continuous. Now \(g^{\prime}(x)=\sin x\) and, so, \(g^{\prime}(x) \neq 0\) for \(x\) near zero, \(x \neq 0\). Also \(f^{\prime}(0)=0=g^{\prime}(0)\) and \(g^{\prime \prime}(x)=\cos x \neq 0\) for \(x\) near \(0\). Moreover,
\[\displaystyle \lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\displaystyle \lim _{x \rightarrow 0} \frac{2}{\cos x}=2 .\nonumber\]
By L'Hospital's rule we get
\[\displaystyle \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\displaystyle \lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\displaystyle \lim _{x \rightarrow 0} \frac{2}{\cos x}=2 .\nonumber\]
Applying L'Hospital's rule one more time we get
\[\displaystyle \lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}=\displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\displaystyle \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=2 .\nonumber\]
Let \(g(x)=x+3 x^{2}\) and let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be given by
\[f(x)=\left\{\begin{array}{ll}
x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \text {;} \\
0, & \text { if } x=0.
\end{array}\right. \nonumber\]
Solution
Now consider the limit
\[\displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\displaystyle \lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{x+3 x^{2}} . \nonumber\]
Using the derivative rules at \(x \neq 0\) and the definition of derivative at \(x = 0\) we can see that \(f\) is differentiable and \[f^{\prime}(x)=\left\{\begin{array}{ll}
2 x \sin \frac{1}{x}-\cos \frac{1}{x}, & \text { if } x \neq 0 \text {;}\\
0, & \text { if } x=0 \text {,}
\end{array}\right. \nonumber\]
However, \(f^{\prime}\) is not coniitnuous at \(0\) (since \(\displaystyle \lim _{x \rightarrow 0} f^{\prime}(x)\) does not exists) and, hence, L'Hospital's rule cannot be applied in this case.
On the other hand \(\displaystyle \lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{x+3 x^{2}}\) does exist as we can see from
\[\displaystyle \lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{x+3 x^{2}}=\displaystyle \lim _{x \rightarrow 0} \frac{x \sin \frac{1}{x}}{1+3 x}=\frac{\displaystyle \lim _{x \rightarrow 0} x \sin \frac{1}{x}}{\displaystyle \lim _{x \rightarrow 0}(1+3 x)}=0 . \nonumber\]
Let \(a, b \in \mathbb{R}\), \(a < b\), and \(\bar{x} (a, b)\). Suppose \(f, g:(a, b) \backslash\{\bar{x}\} \rightarrow \mathbb{R}\) are differentiable on \((a, b) \backslash\{\bar{x}\}\) and assume \(\displaystyle \lim _{x \rightarrow \bar{x}} f(x)=\displaystyle \lim _{x \rightarrow \bar{x}} g(x)=\infty\). Suppose further that there exists \(\delta > 0\) such that \(g^{\prime}(x) \neq 0\) for all \(x \in B(\bar{x} ; \delta) \cap(a, b)\), \(x \neq \bar{x}\).
If \(\ell \in \mathbb{R}\) and
\[\displaystyle \lim _{x \rightarrow \bar{x}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell ,\]
then
\[\displaystyle \lim _{x \rightarrow \bar{x}} \frac{f(x)}{g(x)}=\ell .\]
- Proof
-
Since \(\displaystyle \lim _{x \rightarrow \bar{x}} f(x)=\displaystyle \lim _{x \rightarrow \bar{x}} g(x)=\infty\), choosing a smaller positive \(\delta\) if necessary, we can assume that \(f(x) \neq 0\) and \(g(x) \neq 0\) for all \(x \in B(\bar{x} ; \delta) \cap(a, b)\).
We will show that \(\displaystyle \lim _{x \rightarrow \bar{x}^{+}} \frac{f(x)}{g(x)}=\ell\). The proof that \(\displaystyle \lim _{x \rightarrow \bar{x}^{-}} \frac{f(x)}{g(x)}=\ell\) is completely analogous.
Fix any \(\varepsilon > 0\). We need to find \(\delta_{0}>0\) such that \(|f(x) / g(x)-\ell|<\varepsilon\) whenever \(x \in B_{+}\left(\bar{x} ; \delta_{0}\right) \cap (a, b)\).
From \(\PageIndex{18}\), one cn choose \(K > 0\) and a positive \(\delta_{1}<\delta\) such that \[\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}\right| \leq K \text { and }\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-\ell\right|<\frac{\varepsilon}{2}\] whenever \(x \in B\left(\bar{x} ; \delta_{1}\right) \cap(a, b)\), \(x \neq \bar{x}\).
Fix \(\alpha \in B_{+}\left(\bar{x} ; \delta_{1}\right) \cap(a, b)\) (in particular, \(\alpha > \bar{x}\). Since \(\displaystyle \lim _{x \rightarrow \bar{x}} f(x)=\infty\), we can find \(\delta_{2}>0\) such that \(\delta_{2}<\min \left\{\delta_{1}, \alpha-\bar{x}\right\}\) and \(f(x) \neq f(\alpha)\) for \(x \in B_{+}\left(\bar{x} ; \delta_{2}\right) \cap(a, b)=B_{+}\left(\bar{x} ; \delta_{2}\right)\). Moreover, for such \(x\), since \(g^{\prime}(z) \neq 0\) if \(x < z < \alpha\), Rolle's theorem (Theorem 4.2.2) guarantees that \(g(x) \neq g(\alpha)\). Therefore, for all \(x \in B_{+}\left(\bar{x} ; \delta_{2}\right)\) we can write,
\[\frac{f(x)}{g(x)}=\frac{f(x)-f(\alpha)}{g(x)-g(\alpha)} \frac{1-\frac{g(\alpha)}{g(x)}}{1-\frac{f(\alpha)}{f(x)}} .\]
Now, define
\[H_{\alpha}(x)=\frac{1-\frac{g(\alpha)}{g(x)}}{1-\frac{f(\alpha)}{f(x)}} \text { for } x \in B_{+}\left(\bar{x} ; \delta_{2}\right) .\] Since \(\displaystyle \lim _{x \rightarrow \bar{x}} f(x)=\displaystyle \lim _{x \rightarrow \bar{x}} g(x)=\infty\), we have that \(\displaystyle \lim _{x \rightarrow \bar{x}^{+}} H_{\alpha}(x)=1\). Thus, there exists a positive \(\gamma<\delta_{2}\) such that
\[\left|H_{\alpha}(x)-1\right|<\frac{\varepsilon}{2 K} \text { whenever } x \in B_{+}(\bar{x} ; \gamma) .\]
For any \(x \in B_{+}(\bar{x} ; \gamma)\), applying Theorem 4.2.4 on the interval \([x, \alpha]\), we can write \([f(x)-f(\alpha)] g^{\prime}(c)= [g(x)-g(\alpha)] f^{\prime}(c)\) for some \(c \in (x, \alpha)\) (note that, in particular, \(c \in B\left(\bar{x}: \delta_{1}\right) \cap(a, b)\)). For such \(c\) we get \[\frac{f(x)}{g(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} H_{\alpha}(x) .\] Since \(c \in B\left(\bar{x}: \delta_{1}\right) \cap(a, b)\), applying \(\PageIndex{20}\) we get that, for \(x \in B_{+}(\bar{x} ; \gamma)=B_{+}(\bar{x} ; \gamma) \cap(a, b)\),
\[\begin{aligned}
\left|\frac{f(x)}{g(x)}-\ell\right| &=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)} H_{\alpha}(x)-\ell\right| \\
&=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}\left(H_{\alpha}(x)-1\right)+\frac{f^{\prime}(c)}{g^{\prime}(c)}-\ell\right| \\
& \leq\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}\right|\left|H_{\alpha}(x)-1\right|+\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-\ell\right| \\
&<K \frac{\varepsilon}{2 K}+\frac{\varepsilon}{2}=\varepsilon \text {.}
\end{aligned}\]Setting \(\delta_{0}=\gamma\) completes the proof. \(\square\)
Consider the limit \[\displaystyle \lim _{x \rightarrow 0} \frac{\ln x^{2}}{1+\frac{1}{\sqrt[3]{x^{2}}}} . \nonumber\]
Solution
Here \(f(x)=\ln x^{2}\), \(g(x)=1+\frac{1}{\sqrt[3]{x^{2}}}\), \(\bar{x} = 0\), and we may take as \((a, b)\) any open interval containing \(0\). Clearly \(f\) and \(g\) satisfy the differentiability assumptions and \(g^{\prime}(x) \neq 0\) for all \(x \neq 0\). Moreover, \(\displaystyle \lim _{x \rightarrow \bar{x}} f(x)=\displaystyle \lim _{x \rightarrow \bar{x}} g(x)=\infty\). We analyze the quotient of the derivatives. We have
\[\displaystyle \lim _{x \rightarrow 0} \frac{2 / x}{-\frac{2}{3} \frac{1}{\sqrt[3]{x^{5}}}}=\displaystyle \lim _{x \rightarrow 0}-3 \frac{\sqrt[3]{x^{5}}}{x}=\displaystyle \lim _{x \rightarrow 0}-3 \sqrt[3]{x^{2}}=0 . \nonumber\]
It now follows from Theorem 4.4.2 that
\[\displaystyle \lim _{x \rightarrow 0} \frac{\ln x^{2}}{1+\frac{1}{\sqrt[3]{x^{2}}}}=0 . \nonumber\]
The proofs of Theorem 4.4.1 and Theorem 4.4.2 show that the results in these theorems can be applied for left-hand and right-hand limits. Moreover, the results can also be modified to include the case when \(\bar{x}\) is an endpoint of the domain of the functions \(f\) and \(g\).
The following theorem can be proved following the method in the proof of Theorem 4.4.1.
Let \(f\) and \(g\) be differentiable on \((a, \infty\). Suppose \(g^{\prime}(x) \neq 0\) for all \(x \in (a, \infty\) and
\[\displaystyle \lim _{x \rightarrow \infty} f(x)=\displaystyle \lim _{x \rightarrow \infty} g(x)=0 .\]
If \(\ell \in \mathbb{R}\) and
\[\displaystyle \lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell ,\] then \[\displaystyle \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\ell .\]
Consider the limit \[\displaystyle \lim _{x \rightarrow \infty} \frac{1}{x\left(\frac{\pi}{2}-\arctan x\right)} . \nonumber\]
Solution
Writing the quotient in the form \(\frac{1 / x}{\frac{\pi}{2}-\arctan x}\) we can apply Theorem 4.4.4. We now compute the limit of the quotient of the derivatives
\[\displaystyle \lim _{x \rightarrow \infty} \frac{-1 / x^{2}}{-\frac{1}{x^{2}+1}}=\displaystyle \lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{2}}=1 . \nonumber\]
In view of Theorem 4.4.4 the desired limit is also \(1\).
The following theorem can be proved following the method in the proof of THeorem 4.4.2.
Let \(f\) and \(g\) be differentiable on \((a, \infty)\). Suppose \(g^{\prime}(x) \neq 0\) for all \(x \in (a, \infty)\) and \[\displaystyle \lim _{x \rightarrow \infty} f(x)=\displaystyle \lim _{x \rightarrow \infty} g(x)=\infty . \] If \(\ell \in \mathbb{R}\) and \[\displaystyle \lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell ,\] then \[\displaystyle \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\ell .\]
Consider the limit \[\displaystyle \lim _{x \rightarrow \infty} \frac{\ln x}{x} .\]
Solution
Clearly the functions \(f(x)=\ln x\) and \(g(x)=x\) satisfy the conditions of Theorem 4.4.5. We have
\[\displaystyle \lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\displaystyle \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0 \nonumber\]
It follows from Theorem 4.4.5 that \(\displaystyle \lim _{x \rightarrow \infty} \frac{\ln x}{x}=0\)
Exercise \(\PageIndex{1}\)
Use L'Hospital's Rule to find the following limits (you may assume known all the relevant derivatives from calculus):
- \(\displaystyle \lim _{x \rightarrow-2} \frac{x^{3}-4 x}{3 x^{2}+5 x-2}\).
- \(\displaystyle \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x \cos x}\).
- \(\displaystyle \lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+1}-\sqrt{2}}\).
- \(\displaystyle \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\ln (1+x)}\).
- \(\displaystyle \lim _{x \rightarrow 1} \frac{\ln x}{\sin (\pi x)}\).
Exercise \(\PageIndex{2}\)
For the problems below use L'Hospital's rule as many times as appropriate to determine the limts.
- \(\displaystyle \lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x \sin x}\).
- \(\displaystyle \lim _{x \rightarrow 0} \frac{\left(x-\frac{\pi}{2}\right)^{2}}{1-\sin x}\).
- \(\displaystyle \lim _{x \rightarrow 0} \frac{x-\arctan x}{x^{3}}\).
- \(\displaystyle \lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x}\).
Exercise \(\PageIndex{3}\)
Use the relevant version of L'Hospital's rule to compute each of the following limits.
- \(\displaystyle \lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x+7}{4 x^{2}-6 x+1}\).
- \(\displaystyle \lim _{x \rightarrow 0^{+}} \frac{-\ln x}{\cot x}\).
- \(\displaystyle \lim _{x \rightarrow \infty} \frac{\frac{\pi}{2}-\arctan x}{\ln \left(1+\frac{1}{x}\right)}\).
- \(\displaystyle \lim _{x \rightarrow \infty} \sqrt{x} e^{-x}\). (Hint: first rewrite as a quotient.)
Exercise \(\PageIndex{4}\)
Prove that the following functions are differentiable at \(1\) and \(-1\).
- \(f(x)=\left\{\begin{array}{ll}
x^{2} e^{-x^{2}}, & \text { if }|x| \leq 1 \text {;}\\
\frac{1}{e}, & \text { if }|x|>1 \text {.}
\end{array}\right.\) - \(f(x)=\left\{\begin{array}{ll}
\arctan x, & \text { if }|x| \leq 1 \text {;}\\
\frac{\pi}{4} \operatorname{sign} x+\frac{x-1}{2}, & \text { if }|x|>1 \text {.}
\end{array}\right.\)
Exercise \(\PageIndex{5}\)
Let \(P(x)\) be a polynomial. Prove that \[\displaystyle \lim _{x \rightarrow \infty} P(x) e^{-x}=0 . \nonumber\]
Exercise \(\PageIndex{6}\)
Consider the function
\[f(x)=\left\{\begin{array}{ll}
e^{-\frac{1}{x^{2}}}, & \text { if } x \neq 0 \text {;}\\
0, & \text { if } x=0 \text {.}
\end{array}\right.\]
Prove that \(f \in C^{n}(\mathbb{R})\) for every \(n \in \mathbb{N}\).