# 8.1: The Arctangent Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Definition

For any $$x \in \mathbb{R},$$ we call

$\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$

the arctangent of $$x .$$

## Proposition $$\PageIndex{1}$$

The arctangent function is differentiable at every $$x \in \mathbb{R} .$$

Moreover, if $$f(x)=\arctan (x),$$ then

$f^{\prime}(x)=\frac{1}{1+x^{2}}.$

Proof

The result follows immediately from Theorem $$7.5 .4 .$$ $$\quad$$ Q.E.D.

## Proposition $$\PageIndex{2}$$

The arctangent is increasing on $$\mathbb{R}$$.

Proof

The result follows immediately from the previous proposition and the fact that

$\frac{1}{1+x^{2}}>0$

for every $$x \in \mathbb{R}$$. $$\quad$$ Q.E.D.

## Definition

$$\pi=2 \lim _{x \rightarrow+\infty} \arctan (x)=2 \int_{0}^{+\infty} \frac{1}{1+t^{2}} d t$$

Note that $$0<\pi<4$$ by Example $$7.7 .1 .$$

The following proposition says that the arctangent function is an odd function.

## Theorem $$\PageIndex{3}$$

For any $$x \in \mathbb{R},$$ arctan $$(x)=-\arctan (-x)$$.

Proof

Using the substitution $$t=-u,$$ we have

\begin{aligned} \arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=-\int_{0}^{-x} \frac{1}{1+u^{2}} d u=-\arctan (-x). & \end{aligned}

Q.E.D.

It now follows that

$\lim _{x \rightarrow-\infty} \arctan (x)=-\lim _{x \rightarrow-\infty} \arctan (-x)=-\frac{\pi}{2}.$

Hence the range of the arctangent function is $$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$.

## Proposition $$\PageIndex{4}$$

If $$x>0,$$ then

$\arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}.$

Proof

Using the substitution $$t=\frac{1}{u},$$ we have

\begin{aligned} \arctan \left(\frac{1}{x}\right) &=\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t \\ &=\int_{+\infty}^{x} \frac{1}{1+\frac{1}{u^{2}}}\left(-\frac{1}{u^{2}}\right) d u \\ &=-\int_{+\infty}^{x} \frac{1}{1+u^{2}} d u \\ &=\int_{x}^{+\infty} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\int_{0}^{x} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\arctan (x). \end{aligned}

Q.E.D.

## Proposition $$\PageIndex{5}$$

If $$x<0$$, then

$\arctan (x)+\arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2}.$

Proof

The result follows immediately from the preceding proposition and the fact that arctangent is an odd function.

## Exercise $$\PageIndex{1}$$

Show that arctan $$(1)=\frac{\pi}{4}$$ and $$\arctan (-1)=-\frac{\pi}{4}$$.

This page titled 8.1: The Arctangent Function is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.