Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

1.1.E: Problems in Set Theory (Exercises)

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Prove Theorem 1 (show that \(x\) is in the left-hand set iff it is in the right-hand set). For example, for \((\mathrm{d}),\)
    \begin{aligned} x \in(A \cup B) \cap C & \Longleftrightarrow[x \in(A \cup B) \text { and } x \in C] \\ & \Longleftrightarrow[(x \in A \text { or } x \in B), \text { and } x \in C] \\ & \Longleftrightarrow[(x \in A, x \in C) \text { or }(x \in B, x \in C)]. \end{aligned}

    Exercise \(\PageIndex{2}\)

    Prove that
    (i) \(-(-A)=A\);
    (ii) \(A \subseteq B\) iff \(-B \subseteq-A\).

    Exercise \(\PageIndex{3}\)

    Prove that
    A-B=A \cap(-B)=(-B)-(-A)=-[(-A) \cup B].
    Also, give three expressions for \(A \cap B\) and \(A \cup B,\) in terms of complements.

    Exercise \(\PageIndex{4}\)

    Prove the second duality law (Theorem 2(ii)).

    Exercise \(\PageIndex{5}\)

    Describe geometrically the following sets on the real line:
    \begin{array}{ll}{\text { (i) }\{x | x<0\} ;} & {\text { (ii) }\{x| | x |<1\}}; \\ {\text { (iii) }\{x| | x-a |<\varepsilon\} ;} & {\text { (iv) }\{x | a<x \leq b\}}; \\ {\text { (v) }\{x| | x |<0\}}. \end{array}

    Exercise \(\PageIndex{6}\)

    Let \((a, b)\) denote the set
    \{\{a\},\{a, b\}\}
    (Kuratowski's definition of an ordered pair).
    (i) Which of the following statements are true?
    \begin{array}{ll}{\text { (a) } a \in(a, b) ;} & {\text { (b) }\{a\} \in(a, b)}; \\ {\text { (c) }(a, a)=\{a\} ;} & {\text { (d) } b \in(a, b)}; \\ {\text { (e) }\{b\} \in(a, b) ;} & {\text { (f) }\{a, b\} \in(a, b)}. \end{array}
    (ii) Prove that \((a, b)=(u, v)\) if \(a=u\) and \(b=v\).
    [Hint: Consider separately the two cases \(a=b\) and \(a \neq b,\) noting that \(\{a, a\}=\) \(\{a\} .\) Also note that \(\{a\} \neq a . ]\)

    Exercise \(\PageIndex{7}\)

    Describe geometrically the following sets in the \(x y\)-plane.
    (i) \(\{(x, y) | x<y\}\);
    (ii) \(\left\{(x, y) | x^{2}+y^{2}<1\right\}\);
    (iii) \(\{(x, y)|\max (|x|,|y|)<1\}\);
    (iii) \(\left\{(x, y) | y>x^{2}\right\}\);
    (iv) \(\left\{(x, y) | y>x^{2}\right\}\);
    (vii) \(\{(x, y)| | x|+| y |<4\}\);
    (vii) \(\left\{(x, y) |(x-2)^{2}+(y+5)^{2} \leq 9\right\}\);
    (viii) \(\left\{(x, y) | x^{2}-2 x y+y^{2}<0\right\}\);
    (ix) \(\left\{(x, y) | x^{2}-2 x y+y^{2}=0\right\}\).

    Exercise \(\PageIndex{8}\)

    Prove that
    (i) \((A \cup B) \times C=(A \times C) \cup(B \times C)\);
    (ii) \((A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)\);
    (iii) \((X \times Y)-\left(X^{\prime} \times Y^{\prime}\right)=\left[\left(X \cap X^{\prime}\right) \times\left(Y-Y^{\prime}\right)\right] \cup\left[\left(X-X^{\prime}\right) \times Y\right]\);
    [Hint: In each case, show that an ordered pair \((x, y)\) is in the left-hand set iff it is in the right-hand set, treating \((x, y)\) as one element of the Cartesian product. \(]\)

    Exercise \(\PageIndex{9}\)

    Prove the distributive laws
    (i) \(A \cap \cup X_{i}=\bigcup\left(A \cap X_{i}\right)\);
    (ii) \(A \cup \cap X_{i}=\bigcap\left(A \cup X_{i}\right)\);
    (iii) \(\left(\cap X_{i}\right)-A=\cap\left(X_{i}-A\right)\);
    (iv) \((\cup X _{i} )-A=\cup\left(X_{i}-A\right)\);
    (v) \(\cap X_{i} \cup \cap Y_{j}=\cap_{i, j}\left(X_{i} \cup Y_{j}\right) ;\)
    (vi) \(\cup X_{i} \cap \cup Y_{j}=\cup_{i, j}\left(X_{i} \cap Y_{j}\right)\).

    Exercise \(\PageIndex{10}\)

    Prove that
    (i) \(\left(\cup A_{i}\right) \times B=\bigcup\left(A_{i} \times B\right)\);
    (ii) \(\left(\cap A_{i}\right) \times B=\cap\left(A_{i} \times B\right)\);
    (iii) \(\left(\cap_{i} A_{i}\right) \times\left(\cap_{j} B_{j}\right)=\bigcap_{i, j}\left(A_{i} \times B_{i}\right)\);
    (iv) \(\left(\cup_{i} A_{i}\right) \times\left(\bigcup_{j} B_{j}\right)=\bigcup_{i, j}\left(A_{i} \times B_{j}\right)\).