1.1.E: Problems in Set Theory (Exercises)
- Page ID
- 22251
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Prove Theorem 1 (show that \(x\) is in the left-hand set iff it is in the right-hand set). For example, for \((\mathrm{d}),\)
\[
\begin{aligned} x \in(A \cup B) \cap C & \Longleftrightarrow[x \in(A \cup B) \text { and } x \in C] \\ & \Longleftrightarrow[(x \in A \text { or } x \in B), \text { and } x \in C] \\ & \Longleftrightarrow[(x \in A, x \in C) \text { or }(x \in B, x \in C)]. \end{aligned}
\]
Prove that
(i) \(-(-A)=A\);
(ii) \(A \subseteq B\) iff \(-B \subseteq-A\).
Prove that
\[
A-B=A \cap(-B)=(-B)-(-A)=-[(-A) \cup B].
\]
Also, give three expressions for \(A \cap B\) and \(A \cup B,\) in terms of complements.
Prove the second duality law (Theorem 2(ii)).
Describe geometrically the following sets on the real line:
\[
\begin{array}{ll}{\text { (i) }\{x | x<0\} ;} & {\text { (ii) }\{x| | x |<1\}}; \\ {\text { (iii) }\{x| | x-a |<\varepsilon\} ;} & {\text { (iv) }\{x | a<x \leq b\}}; \\ {\text { (v) }\{x| | x |<0\}}. \end{array}
\]
Let \((a, b)\) denote the set
\[
\{\{a\},\{a, b\}\}
\]
(Kuratowski's definition of an ordered pair).
(i) Which of the following statements are true?
\[
\begin{array}{ll}{\text { (a) } a \in(a, b) ;} & {\text { (b) }\{a\} \in(a, b)}; \\ {\text { (c) }(a, a)=\{a\} ;} & {\text { (d) } b \in(a, b)}; \\ {\text { (e) }\{b\} \in(a, b) ;} & {\text { (f) }\{a, b\} \in(a, b)}. \end{array}
\]
(ii) Prove that \((a, b)=(u, v)\) if \(a=u\) and \(b=v\).
[Hint: Consider separately the two cases \(a=b\) and \(a \neq b,\) noting that \(\{a, a\}=\) \(\{a\} .\) Also note that \(\{a\} \neq a . ]\)
Describe geometrically the following sets in the \(x y\)-plane.
(i) \(\{(x, y) | x<y\}\);
(ii) \(\left\{(x, y) | x^{2}+y^{2}<1\right\}\);
(iii) \(\{(x, y)|\max (|x|,|y|)<1\}\);
(iii) \(\left\{(x, y) | y>x^{2}\right\}\);
(iv) \(\left\{(x, y) | y>x^{2}\right\}\);
(vii) \(\{(x, y)| | x|+| y |<4\}\);
(vii) \(\left\{(x, y) |(x-2)^{2}+(y+5)^{2} \leq 9\right\}\);
(viii) \(\left\{(x, y) | x^{2}-2 x y+y^{2}<0\right\}\);
(ix) \(\left\{(x, y) | x^{2}-2 x y+y^{2}=0\right\}\).
Prove that
(i) \((A \cup B) \times C=(A \times C) \cup(B \times C)\);
(ii) \((A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)\);
(iii) \((X \times Y)-\left(X^{\prime} \times Y^{\prime}\right)=\left[\left(X \cap X^{\prime}\right) \times\left(Y-Y^{\prime}\right)\right] \cup\left[\left(X-X^{\prime}\right) \times Y\right]\);
[Hint: In each case, show that an ordered pair \((x, y)\) is in the left-hand set iff it is in the right-hand set, treating \((x, y)\) as one element of the Cartesian product. \(]\)
Prove the distributive laws
(i) \(A \cap \cup X_{i}=\bigcup\left(A \cap X_{i}\right)\);
(ii) \(A \cup \cap X_{i}=\bigcap\left(A \cup X_{i}\right)\);
(iii) \(\left(\cap X_{i}\right)-A=\cap\left(X_{i}-A\right)\);
(iv) \((\cup X _{i} )-A=\cup\left(X_{i}-A\right)\);
(v) \(\cap X_{i} \cup \cap Y_{j}=\cap_{i, j}\left(X_{i} \cup Y_{j}\right) ;\)
(vi) \(\cup X_{i} \cap \cup Y_{j}=\cup_{i, j}\left(X_{i} \cap Y_{j}\right)\).
Prove that
(i) \(\left(\cup A_{i}\right) \times B=\bigcup\left(A_{i} \times B\right)\);
(ii) \(\left(\cap A_{i}\right) \times B=\cap\left(A_{i} \times B\right)\);
(iii) \(\left(\cap_{i} A_{i}\right) \times\left(\cap_{j} B_{j}\right)=\bigcap_{i, j}\left(A_{i} \times B_{i}\right)\);
(iv) \(\left(\cup_{i} A_{i}\right) \times\left(\bigcup_{j} B_{j}\right)=\bigcup_{i, j}\left(A_{i} \times B_{j}\right)\).