Skip to main content
Mathematics LibreTexts

6.1: Applications of Conformal Mappings

  • Page ID
    76230
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Hydrodynamics

    If we have a (steady-state) incompressible, nonviscous fluid, we are interested in finding its velocity field

    \(\mathbf V (x,y)= \left(u(x,y), v(x,y)\right).\)

    From vector analysis we know that ‘incompressible’ means that the divergence \(\text{div}\,\mathbf V =0.\) (We say \(\mathbf V\) is divergence free.) We assume that \(\mathbf V\) is also a potential flow and hence is circulation free; that is \(\mathbf V = \text{grad } \phi\) for some \(\phi\) called the velocity potential. Thus \(\phi\) is harmonic because

    \(\nabla^2\phi = \text{div } \text{grad }\phi = \text{div } \mathbf V=0.\)

    Thus when we solve for \(\phi\) we can obtain \(\mathbf V\) by taking \(\mathbf V = \text{grad } \phi\). That is

    \(\begin{eqnarray*}
                u=\frac{\partial \phi }{\partial x},\quad v=\frac{\partial \phi }{\partial y}.
                \end{eqnarray*}\)

    The conjugate \(ψ\) of the harmonic function \(ϕ\) (which will exist on any simple connected region) is called the stream function, and the analytic function

    \(F=\phi +i\psi\)

    is called the complex potential.

    The stream function must satisfy

    \(\begin{eqnarray*}
                u=\frac{\partial \psi }{\partial y},\quad v=-\frac{\partial \psi }{\partial x}.
            \end{eqnarray*}\)

    Finally, lines of constant \(ψ\) have \(V\) as their tangents, so lines of constant \(ψ\) may be interpreted as the lines along which particles of fluid move; hence the name stream function.

    Streamlines
    Figure 1: Streamlines.

    This page titled 6.1: Applications of Conformal Mappings is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Juan Carlos Ponce Campuzano.

    • Was this article helpful?