2.6: Cauchy-Riemann Equations
- Page ID
- 45403
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Cauchy-Riemann equations are our first consequence of the fact that the limit defining \(f(z)\) must be the same no matter which direction you approach \(z\) from. The Cauchy-Riemann equations will be one of the most important tools in our toolbox.
Partial Derivatives as Limits
Before getting to the Cauchy-Riemann equations we remind you about partial derivatives. If \(u(x, y)\) is a function of two variables then the partial derivatives of \(u\) are defined as
\[\dfrac{\partial u}{\partial x} (x, y) = \lim_{\Delta x \to 0} \dfrac{u(x + \Delta x, y) - u(x, y)}{\Delta x}, \nonumber \]
i.e., the derivative of \(u\) holding \(y\) constant.
\[\dfrac{\partial u}{\partial y} (x, y) = \lim_{\Delta y \to 0} \dfrac{u(x, y + \Delta y) - u(x, y)}{\Delta y}, \nonumber \]
i.e., the derivative of \(u\) holding \(x\) constant.
Cauchy-Riemann Equations
The Cauchy-Riemann equations use the partial derivatives of \(u\) and \(v\) to allow us to do two things: first, to check if \(f\) has a complex derivative and second, to compute that derivative. We start by stating the equations as a theorem.
If \(f(z) = u(x, y) + iv(x, y)\) is analytic (complex differentiable) then
\[\begin{align*} f'(z) &= \dfrac{\partial u}{\partial x} + i \dfrac{\partial v}{\partial x} \\[4pt] &= \dfrac{\partial v}{\partial y} - i \dfrac{\partial u}{\partial y} \end{align*} \]
In particular,
\[\dfrac{\partial u}{\partial x} = \dfrac{\partial v}{\partial y} \label{CR1}\]
and
\[\dfrac{\partial u}{\partial y} = - \dfrac{\partial v}{\partial x}. \label{CR2} \]
These partial differential equations (Equations \ref{CR1} and \ref{CR2}) are what is usually meant by the Cauchy-Riemann equations. Here is the short form of the Cauchy-Riemann equations:
\[u_x = v_y \nonumber \]
\[u_y = -v_x \nonumber \]
- Proof
-
Let's suppose that \(f(z)\) is differentiable in some region \(A\) and
\[f(z) = f(x + iy) = u(x, y) + iv(x, y). \nonumber \]
We'll compute \(f'(z)\) by approaching \(z\) first from the horizontal direction and then from the vertical direction. We’ll use the formula
\[f'(z) = \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z}, \nonumber \]
where \(\Delta z = \Delta x + i \Delta y\).
Horizontal direction: \(\Delta y = 0, \Delta z = \Delta x\)
\[\begin{align*} f'(z) & = \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} \\[4pt] &= \lim_{\Delta x \to 0} \dfrac{f(x + \Delta x + iy) - f(x + iy)}{\Delta x} \\[4pt] & = \lim_{\Delta x \to 0} \dfrac{(u (x + \Delta x, y) + iv(x + \Delta x, y)) - (u(x, y) + iv(x, y))}{\Delta x} \\[4pt] & = \lim_{\Delta x \to 0} \dfrac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \dfrac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \\[4pt] & = \dfrac{\partial u}{\partial x} (x, y) + i \dfrac{\partial v}{\partial x} (x, y) \end{align*} \]
Vertical direction: \(\Delta x = 0\), \(\Delta z = i \Delta y\) (We'll do this one a little faster.)
\[\begin{align*} f'(z) & = \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} \\[4pt] & = \lim_{\Delta y \to 0} \dfrac{(u(x, y + \Delta y) + iv (x, y + \Delta y)) - (u(x, y) + iv (x, y))}{i \Delta y} \\[4pt] & = \lim_{\Delta y \to 0} \dfrac{u(x, y+ \Delta y) - u(x, y)}{i \Delta y} + i \dfrac{v(x, y + \Delta y) - v(x, y)}{i \Delta y} \\[4pt] & = \dfrac{1}{i} \dfrac{\partial u}{\partial y} (x, y) + \dfrac{\partial v}{\partial y} (x, y) \\[4pt] & = \dfrac{\partial v}{\partial y} (x, y) - i \dfrac{\partial u}{\partial y} (x, y) \end{align*} \]
We have found two different representations of \(f'(z)\) in terms of the partials of \(u\) and \(v\). If put them together we have the Cauchy-Riemann equations:
\[f'(z) = \dfrac{\partial u}{\partial x} + i \dfrac{\partial v}{\partial x} = \dfrac{\partial v}{\partial y} - i \dfrac{\partial u}{\partial y} \ \ \Rightarrow \ \ \dfrac{\partial u}{\partial x} = \dfrac{\partial v}{\partial y}, \text{ and } -\dfrac{\partial u}{\partial y} = \dfrac{\partial v}{\partial x}. \nonumber \]
It turns out that the converse is true and will be very useful to us.
Consider the function \(f(z) = u(x, y) + iv (x, y)\) defined on a region \(A\). If \(u\) and \(v\) satisfy the Cauchy-Riemann equations and have continuous partials then \(f(z)\) is differentiable on \(A\).
- Proof
-
The proof of this is a tricky exercise in analysis. It is somewhat beyond the scope of this class, so we will skip it. If you’re interested, with a little effort you should be able to grasp it.
Using the Cauchy-Riemann equations
The Cauchy-Riemann equations provide us with a direct way of checking that a function is differen- tiable and computing its derivative.
Use the Cauchy-Riemann equations to show that \(e^z\) is differentiable and its derivative is \(e^z\).
Solution
We write
\[e^z = e^{x + iy} = e^x \cos (y) + ie^x \sin (y). \nonumber \]
So
\[u(x, y) = e^x \cos (y) \nonumber \]
and
\[v(x, y) = e^x \sin(y). \nonumber \]
Computing partial derivatives we have
- \(u_x = e^x \cos (y)\),
- \(u_y = -e^x \sin (y)\),
- \(v_x = e^x \sin (y)\),
- \(v_y = e^x \cos (y) \).
We see that \(u_x = v_y\) and \(u_y = -v_x\), so the Cauchy-Riemann equations (Equations \ref{CR1} and \ref{CR2}) are satisfied. Thus, \(e^z\) is differentiable and
\[\dfrac{d}{dz} e^z = u_x + iv_x = e^x \cos (y) + ie^x \sin (y) = e^z. \nonumber \]
Use the Cauchy-Riemann equations to show that \(f(z) = \overline{z}\) is not differentiable.
Solution
\(f(x + iy) = x - iy\), so \(u(x, y) = x, v(x, y) = -y\). Taking partial derivatives
\(u_x = 1\), \(u_y = 0\), \(v_x = 0\), \(v_y = -1\)
Since \(u_x \ne v_y\) the Cauchy-Riemann equations (Equations \ref{CR1} and \ref{CR2}) are not satisfied and therefore \(f\) is not differentiable.
If \(f(z)\) is differentiable on a disk and \(f'(z) =0\) on the disk then \(f(z)\) is constant.
- Proof
-
Since \(f\) is differentiable and \(f'(z) \equiv 0\), the Cauchy-Riemann equations show that
\[u_x (x, y) = u_y (x, y) = v_x (x, y) = v_y (x, y) = 0 \nonumber \]
We know from multivariable calculus that a function of \((x, y)\) with both partials identically zero is constant. Thus \(u\) and \(v\) are constant, and therefore so is \(f\).
\(f'(z)\) as a \(2 \times 2\) matrix
Recall that we could represent a complex number \(a + ib\) as a \(2 \times 2\) matrix
\[a + ib \ \leftrightarrow \ \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \nonumber \]
Now if we write \(f(z)\) in terms of \((x, y)\) we have
\[f(z) = f(x + iy) = u(x, y) + iv(x, y) \ \leftrightarrow \ f(x, y) = (u(x, y), v(x, y)). \nonumber \]
We have
\[f'(z) = u_x + iv_x, \nonumber \]
so we can represent \(f'(z)\) as
\[\begin{bmatrix} u_x & -v_x \\ v_x & u_x \end{bmatrix}. \label{1}\]
Using the Cauchy-Riemann equations we can replace \(-v_x\) by \(u_y\) and \(u_x\) by \(v_y\) which gives us the representation
\[f'(z) \ \leftrightarrow \ \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}, \nonumber \]
i.e, \(f'(z)\) is just the Jacobian of \(f(x, y)\).
For me, it is easier to remember the Jacobian than the Cauchy-Riemann equations. Since \(f'(z)\) is a complex number I can use the matrix representation in Equation \(\ref{1}\) to remember the Cauchy-Riemann equations!