Skip to main content
Mathematics LibreTexts

2.6: Cauchy-Riemann Equations

  • Page ID
    45403
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The Cauchy-Riemann equations are our first consequence of the fact that the limit defining \(f(z)\) must be the same no matter which direction you approach \(z\) from. The Cauchy-Riemann equations will be one of the most important tools in our toolbox.

    Partial Derivatives as Limits

    Before getting to the Cauchy-Riemann equations we remind you about partial derivatives. If \(u(x, y)\) is a function of two variables then the partial derivatives of \(u\) are defined as

    \[\dfrac{\partial u}{\partial x} (x, y) = \lim_{\Delta x \to 0} \dfrac{u(x + \Delta x, y) - u(x, y)}{\Delta x}, \nonumber \]

    i.e., the derivative of \(u\) holding \(y\) constant.

    \[\dfrac{\partial u}{\partial y} (x, y) = \lim_{\Delta y \to 0} \dfrac{u(x, y + \Delta y) - u(x, y)}{\Delta y}, \nonumber \]

    i.e., the derivative of \(u\) holding \(x\) constant.

    Cauchy-Riemann Equations

    The Cauchy-Riemann equations use the partial derivatives of \(u\) and \(v\) to allow us to do two things: first, to check if \(f\) has a complex derivative and second, to compute that derivative. We start by stating the equations as a theorem.

    Theorem \(\PageIndex{1}\): Cauchy-Riemann Equations

    If \(f(z) = u(x, y) + iv(x, y)\) is analytic (complex differentiable) then

    \[\begin{align*} f'(z) &= \dfrac{\partial u}{\partial x} + i \dfrac{\partial v}{\partial x} \\[4pt] &= \dfrac{\partial v}{\partial y} - i \dfrac{\partial u}{\partial y} \end{align*} \]

    In particular,

    \[\dfrac{\partial u}{\partial x} = \dfrac{\partial v}{\partial y} \label{CR1}\]

    and

    \[\dfrac{\partial u}{\partial y} = - \dfrac{\partial v}{\partial x}. \label{CR2} \]

    These partial differential equations (Equations \ref{CR1} and \ref{CR2}) are what is usually meant by the Cauchy-Riemann equations. Here is the short form of the Cauchy-Riemann equations:

    \[u_x = v_y \nonumber \]

    \[u_y = -v_x \nonumber \]

    Proof

    Let's suppose that \(f(z)\) is differentiable in some region \(A\) and

    \[f(z) = f(x + iy) = u(x, y) + iv(x, y). \nonumber \]

    We'll compute \(f'(z)\) by approaching \(z\) first from the horizontal direction and then from the vertical direction. We’ll use the formula

    \[f'(z) = \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z}, \nonumber \]

    where \(\Delta z = \Delta x + i \Delta y\).

    Horizontal direction: \(\Delta y = 0, \Delta z = \Delta x\)

    \[\begin{align*} f'(z) & =  \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} \\[4pt] &= \lim_{\Delta x \to 0} \dfrac{f(x + \Delta x + iy) - f(x + iy)}{\Delta x} \\[4pt] & = \lim_{\Delta x \to 0} \dfrac{(u (x + \Delta x, y) + iv(x + \Delta x, y)) - (u(x, y) + iv(x, y))}{\Delta x} \\[4pt] & = \lim_{\Delta x \to 0} \dfrac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \dfrac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \\[4pt] & = \dfrac{\partial u}{\partial x} (x, y) + i \dfrac{\partial v}{\partial x} (x, y) \end{align*} \]

    Vertical direction: \(\Delta x = 0\), \(\Delta z = i \Delta y\) (We'll do this one a little faster.)

    \[\begin{align*} f'(z) & = \lim_{\Delta z \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} \\[4pt] & = \lim_{\Delta y \to 0} \dfrac{(u(x, y + \Delta y) + iv (x, y + \Delta y)) - (u(x, y) + iv (x, y))}{i \Delta y} \\[4pt] & = \lim_{\Delta y \to 0} \dfrac{u(x, y+ \Delta y) - u(x, y)}{i \Delta y} + i \dfrac{v(x, y + \Delta y) - v(x, y)}{i \Delta y} \\[4pt]  & = \dfrac{1}{i} \dfrac{\partial u}{\partial y} (x, y) + \dfrac{\partial v}{\partial y} (x, y) \\[4pt] & = \dfrac{\partial v}{\partial y} (x, y) - i \dfrac{\partial u}{\partial y} (x, y) \end{align*} \]

    We have found two different representations of \(f'(z)\) in terms of the partials of \(u\) and \(v\). If put them together we have the Cauchy-Riemann equations:

    \[f'(z) = \dfrac{\partial u}{\partial x} + i \dfrac{\partial v}{\partial x} = \dfrac{\partial v}{\partial y} - i \dfrac{\partial u}{\partial y} \ \ \Rightarrow \ \ \dfrac{\partial u}{\partial x} = \dfrac{\partial v}{\partial y}, \text{ and } -\dfrac{\partial u}{\partial y} = \dfrac{\partial v}{\partial x}. \nonumber \]

    It turns out that the converse is true and will be very useful to us.

    Theorem \(\PageIndex{2}\)

    Consider the function \(f(z) = u(x, y) + iv (x, y)\) defined on a region \(A\). If \(u\) and \(v\) satisfy the Cauchy-Riemann equations and have continuous partials then \(f(z)\) is differentiable on \(A\).

    Proof

    The proof of this is a tricky exercise in analysis. It is somewhat beyond the scope of this class, so we will skip it. If you’re interested, with a little effort you should be able to grasp it.

    Using the Cauchy-Riemann equations

    The Cauchy-Riemann equations provide us with a direct way of checking that a function is differen- tiable and computing its derivative.

    Example \(\PageIndex{1}\)

    Use the Cauchy-Riemann equations to show that \(e^z\) is differentiable and its derivative is \(e^z\).

    Solution

    We write

    \[e^z = e^{x + iy} = e^x \cos (y) + ie^x \sin (y). \nonumber \]

    So

    \[u(x, y) = e^x \cos (y) \nonumber \]

    and

    \[v(x, y) = e^x \sin(y). \nonumber \]

    Computing partial derivatives we have

    • \(u_x = e^x \cos (y)\),
    • \(u_y = -e^x \sin (y)\),
    • \(v_x = e^x \sin (y)\),
    • \(v_y = e^x \cos (y) \).

    We see that \(u_x = v_y\) and \(u_y = -v_x\), so the Cauchy-Riemann equations (Equations \ref{CR1} and \ref{CR2}) are satisfied. Thus, \(e^z\) is differentiable and

    \[\dfrac{d}{dz} e^z = u_x + iv_x = e^x \cos (y) + ie^x \sin (y) = e^z. \nonumber \]

    Example \(\PageIndex{2}\)

    Use the Cauchy-Riemann equations to show that \(f(z) = \overline{z}\) is not differentiable.

    Solution

    \(f(x + iy) = x - iy\), so \(u(x, y) = x, v(x, y) = -y\). Taking partial derivatives

    \(u_x = 1\), \(u_y = 0\), \(v_x = 0\), \(v_y = -1\)

    Since \(u_x \ne v_y\) the Cauchy-Riemann equations (Equations \ref{CR1} and \ref{CR2}) are not satisfied and therefore \(f\) is not differentiable.

    Theorem \(\PageIndex{3}\)

    If \(f(z)\) is differentiable on a disk and \(f'(z) =0\) on the disk then \(f(z)\) is constant.

    Proof

    Since \(f\) is differentiable and \(f'(z) \equiv 0\), the Cauchy-Riemann equations show that

    \[u_x (x, y) = u_y (x, y) = v_x (x, y) = v_y (x, y) = 0 \nonumber \]

    We know from multivariable calculus that a function of \((x, y)\) with both partials identically zero is constant. Thus \(u\) and \(v\) are constant, and therefore so is \(f\).

    \(f'(z)\) as a \(2 \times 2\) matrix

    Recall that we could represent a complex number \(a + ib\) as a \(2 \times 2\) matrix

    \[a + ib \ \leftrightarrow \ \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \nonumber \]

    Now if we write \(f(z)\) in terms of \((x, y)\) we have

    \[f(z) = f(x + iy) = u(x, y) + iv(x, y) \ \leftrightarrow \ f(x, y) = (u(x, y), v(x, y)). \nonumber \]

    We have

    \[f'(z) = u_x + iv_x, \nonumber \]

    so we can represent \(f'(z)\) as

    \[\begin{bmatrix} u_x & -v_x \\ v_x & u_x \end{bmatrix}. \label{1}\]

    Using the Cauchy-Riemann equations we can replace \(-v_x\) by \(u_y\) and \(u_x\) by \(v_y\) which gives us the representation

    \[f'(z) \ \leftrightarrow \ \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}, \nonumber \]

    i.e, \(f'(z)\) is just the Jacobian of \(f(x, y)\).

    For me, it is easier to remember the Jacobian than the Cauchy-Riemann equations. Since \(f'(z)\) is a complex number I can use the matrix representation in Equation \(\ref{1}\) to remember the Cauchy-Riemann equations!


    This page titled 2.6: Cauchy-Riemann Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.