Skip to main content
Mathematics LibreTexts

3.7: Green's Theorem

  • Page ID
    50593
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ingredients: \(C\) a simple closed curve (i.e. no self-intersection), and \(R\) the interior of \(C\).

    \(C\) must be piecewise smooth (traversed so interior region \(R\) is on the left) and piecewise smooth (a few corners are okay).

    003 - (3.8 - Green s theorem).svg
    Figure \(\PageIndex{1}\): Examples of piecewise smooth and piecewise smooth regions. (CC BY-NC; Ümit Kaya)

    Theorem \(\PageIndex{1}\): Green's Theorem

    If the vector field \(F = (M, N)\) is defined and differentiable on \(R\) then

    \[\oint_{C} M\ dx + N\ dy = \int \int_R N_x - M_y\ dA. \nonumber \]

    In vector form this is written

    \[\oint_{C} F \cdot dr = \int \int_{R} \text{curl} F\ dA. \nonumber \]

    where the curl is defined as \(\text{curl} F = (N_x - M_y)\)


    This page titled 3.7: Green's Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.