Skip to main content
Mathematics LibreTexts

4.1: Introduction to Line Integrals and Cauchy’s Theorem

  • Page ID
    6480
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The basic theme here is that complex line integrals will mirror much of what we’ve seen for multi- variable calculus line integrals. But, just like working with \(e^{i \theta}\) is easier than working with sine and cosine, complex line integrals are easier to work with than their multivariable analogs. At the same time they will give deep insight into the workings of these integrals.

    To define complex line integrals, we will need the following ingredients:

    • The complex plane: \(z = x + iy\)
    • The complex differential \(dz = dx + idy\)
    • A curve in the complex plane: \(\gamma (t) = x(t) + iy(t)\), defined for \(a \le t \le b\).
    • A complex function: \(f(z) = u(x, y) + iv(x, y)\)

    This page titled 4.1: Introduction to Line Integrals and Cauchy’s Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.