Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.E: Hyperbolic Equations (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)



u_{tt}=c^2u_{xx}

u(A)+u(C)=u(B)+u(D)

holds for all parallelograms ABCD in the (x,t)-plane, which are bounded by characteristic lines, see Figure 4.E.1.

Figure to the exercise

Figure 4.1: Figure to the exercise

Q4.2: Method of separation of variables

Let v_k(x) be an eigenfunction to the eigenvalue of the eigenvalue problem

-v''(x)=\lambda v(x) in (0,l), v(0)=v(l)=0

and let w_k(t) be a solution of differential equation

-w''(t)=\lambda_kw(t)

Prove that v_k(x)w_k(t) is a solution of the partial differential equation (wave equation) u_{tt}=u_{xx}.

Q4.3

Solve for given f(x) and \mu\in\mathbb{R}^1 the initial value problem

\begin{eqnarray*} u_t+u_x+\mu u_{xxx} &=& 0\quad \mbox{in}\quad \mathbb{R}^1\times\mathbb{R}^1_+\\ u(x,0) &=& f(x) \ . \end{eqnarray*}

Q4.4

Let S:= \{(x,t);\ t=\gamma x\} be space-like, i.e., |\gamma|<1/c^2) in (x,t)-space, x=(x_1,x_2,x_3). Show that the Cauchy initial value problem \Box u=0 with data for u on S can be transformed using the Lorentz-transform

x_1={x_1-\gamma c^2t\over\sqrt{1-\gamma^2c^2}}

\ x_2'=x_2,\ x_3'=x_3

t'={t-\gamma x_1\over\sqrt{1-\gamma^2c^2}}

into the initial value problem, in new coordinates,

\begin{eqnarray*} \Box u &=& 0\\ u(x',0) &=& f(x')\\ u_{t'}(x',0) &=& g(x')\ . \end{eqnarray*}

Here we denote the transformed function by u again.

Q4.5

u(x,t):=\sum_{n=1}^\infty\alpha_n\cos\left(\dfrac{\pi n}{l} t\right)\sin\left(\dfrac{\pi n}{l} x\right)

is a C^2-solution of the wave equation u_{tt}=u_{xx} if |\alpha_n|\le c/n^ 4, where the constant c is independent of n.

(ii) Set

\alpha_n:=\int_0^ l f(x)\sin\left(\dfrac{\pi n}{l} x\right)\ dx.

Prove |\alpha_n|\le c/n^4, provided f\in C^4_0(0,l).

Q4.6

Let \Omega be the rectangle (0,a)\times (0,b). Find all eigenvalues and associated eigenfunctions of -\triangle u=\lambda u in \Omega, u=0 on \partial\Omega. Hint: Separation of variables.

Q4.7

i\hbar\psi_t=-\dfrac{\hbar^2}{2m}\triangle_x\psi + V(x)\psi\quad \mbox{in}\ \mathbb{R}^n\times\mathbb{R}^1,

\int_\mathbb{R}^n|\psi(x,t)|^2dx=1\ ,

\triangle u+\dfrac{2m}{\hbar^2}(E-V(x))u=0\quad\mbox{in}\ \ \mathbb{R}^n

under the side condition \int_\mathbb{R}^n |u|^2 dx =1, u:\ \mathbb{R}^n\mapsto {\mathbb C}.

Here is

\psi:\ \mathbb{R}^n\times\mathbb{R}^1\mapsto{\mathbb C}

Planck's constant (\hbar) is a small positive constant) and V(x) a given potential.

Remark. In the case of a hydrogen atom the potential is V(x)=-e/|x|, e is here a positive constant. Then eigenvalues are given by E_n=-me^4/(2\hbar^2n^2), n\in{\mathbb N}, see [22], pp. 202.

Q4.8

Find nonzero solutions by using separation of variables of u_{tt}=\triangle_xu in \Omega\times (0,\infty), u(x,t)=0 on \partial\Omega, where \Omega is the circular cylinder \Omega=\{(x_1,x_2,x_3)\in\mathbb{R}^n:\ x_1^2+x_2^2<R^2,\ 0<x_3<h\}.

Q4.9

Solve the initial value problem

\begin{eqnarray*} 3u_{tt}-4u_{xx} &=& 0\\ u(x,0) &=& \sin x \\ u_t(x,0) &=& 1\ . \end{eqnarray*}

Q4.10

Solve the initial value problem

\begin{eqnarray*} u_{tt}-c^2u_{xx} &=& x^2,\ t>0,\ x\in \mathbb{R}^1\\ u(x,0) &=& x \\ u_t(x,0) &=& 0\ . \end{eqnarray*}

Hint: Find a solution of the differential equation independent on t, and transform the above problem into an initial value problem with homogeneous differential equation by using this solution.

Q4.11

Find with the method of separation of variables nonzero solutions u(x,t), 0\le x\le1,\ 0\le t<\infty, of

u_{tt}-u_{xx}+u=0\ ,

such that u(0,t)=0, and u(1,t)=0 for all t\in[0,\infty).

Q4.12

u_{tt}-c^2u_{xx}=\lambda^2u,\ \lambda=const.

u(x,t)=f(x^2-c^2t^2)=f(s),\ s:=x^2-c^2t^2

z^2f''(z)+zf'(z)+(z^2-n^2)f=0,\ z>0

with n=0.

Remark. The above differential equation for u is the transformed telegraph equation (see Section 4.4).

Q4.13

Find the formula for the solution of the following Cauchy initial value problem u_{xy}=f(x,y), where S: y=ax+b, a>0, and the initial conditions on S are given by

\begin{eqnarray*} u&=&\alpha x +\beta y+\gamma,\\ u_x&=&\alpha,\\ u_y&=&\beta, \end{eqnarray*}

a,\ b,\ \alpha,\ \beta,\ \gamma constants.

Q4.14

Find all eigenvalues \mu of

\begin{eqnarray*} -q''(\theta)&=&\mu q(\theta)\\ q(\theta)&=&q(\theta+2\pi)\ . \end{eqnarray*}

Contributors and Attributions


4.E: Hyperbolic Equations (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?