Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.2.E: Problems on Relations and Mappings (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise \PageIndex{1}

For the relations specified in Problem 7 of §§1-3, find D_{R}, D_{R}^{\prime}, and R^{-1}. Also, find R[A] and R^{-1}[A] if
\begin{array}{ll}{\text { (a) } A=\left\{\frac{1}{2}\right\} ;} & {\text { (b) } A=\{1\}} \\ {\text { (c) } A=\{0\} ;} & {\text { (d) } A=\emptyset \text { ; }} \\ {\text { (e) } A=\{0,3,-15\} ;} & {\text { (f) } A=\{3,4,7,0,-1,6\}} \\ {\text { (g) } A=\{x |-20<x<5\}}\end{array}

Exercise \PageIndex{2}

Prove that if A \subseteq B, then R[A] \subseteq R[B] . Disprove the converse by a counterexample.

Exercise \PageIndex{3}

Prove that
(i) R[A \cup B]=R[A] \cup R[B];
(ii) R[A \cap B] \subseteq R[A] \cap R[B];
(iii) R[A-B] \supseteq R[A]-R[B].
Disprove reverse inclusions in (ii) and (iii) by examples. Do (i) and (ii) with A, B replaced by an arbitrary set family \left\{A_{i} | i \in I\right\}.

Exercise \PageIndex{4}

Under which conditions are the following statements true?
\begin{array}{cc} \text{(i) } R[x] = \emptyset ; & \text{(ii) } R^{-1}[x] = \emptyset ; \\ \text{(iii) } R[A] = \emptyset ; & \text{(iv) } R^{-1}[A] = \emptyset ; \end{array}

Exercise \PageIndex{5}

Let f : N \rightarrow N(N=\{\text { naturals }\}) . For each of the following functions, specify f[N], i.e., D_{f}^{\prime}, and determine whether f is one to one and onto N, given that for all x \in N,
\begin{array}{ll}{\text { (i) } f(x)=x^{3} ;} & {\text { (ii) } f(x)=1 ; \quad \text { (iii) } f(x)=|x|+3} \\ {\text { (iv) } f(x)=x^{2} ;} & {(\mathrm{v}) f(x)=4 x+5}\end{array}
Do all this also if N denotes
(a) the set of all integers;
(b) the set of all reals.

Exercise \PageIndex{6}

Prove that for any mapping f and any sets A, B, A_{i}(i \in I),
(a) f^{-1}[A \cup B]=f^{-1}[A] \cup f^{-1}[B];
(b) f^{-1}[A \cap B]=f^{-1}[A] \cap f^{-1}[B];
(c) f^{-1}[A-B]=f^{-1}[A]-f^{-1}[B];
(d) f^{-1}\left[\bigcup_{i} A_{i}\right]=\bigcup_{i} f^{-1}\left[A_{i}\right];
(e) f^{-1}\left[\bigcap_{i} A_{i}\right]=\bigcap_{i} f^{-1}\left[A_{i}\right].
Compare with Problem 3.
[Hint: First verify that x \in f^{-1}[A] iff x \in D_{f} and f(x) \in A . ]

Exercise \PageIndex{7}

Let f be a map. Prove that
(a) f\left[f^{-1}[A]\right] \subseteq A;
(b) f\left[f^{-1}[A]\right]=A if A \subseteq D_{f}^{\prime};
(c) if A \subseteq D_{f} and f is one to one, A=f^{-1}[f[A]]/
Is f[A] \cap B \subseteq f\left[A \cap f^{-1}[B]\right] ?

Exercise \PageIndex{8}

Is R an equivalence relation on the set J of all integers, and, if so, what are the R -classes, if
(a) R=\{(x, y) | x-y \text { is divisible by a fixed } n\};
(b) R=\{(x, y) | x-y \text { is odd }\};
(c) R=\{(x, y) | x-y \text { is a prime }\}.
(x, y, n \text { denote integers.) }

Exercise \PageIndex{9}

Is any relation in Problem 7 of §§1-3 reflexive? Symmetric? Transitive?

10. Show by examples that R may be
(a) reflexive and symmetric, without being transitive;
(b) reflexive and transitive without being symmetric.
Does symmetry plus transitivity imply reflexivity? Give a proof or counterexample.


1.2.E: Problems on Relations and Mappings (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?