2.7.E: Problems on Upper and Lower Limits of Sequences in \(E^{*}\) (Exercises)
- Page ID
- 22258
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Complete the missing details in the proofs of Theorems 2 and \(3,\) Corollary \(1,\) and Examples (a) and (b).
State and prove the analogues of Theorems 1 and 2 and Corollary 2 for
\(\underline{\lim} x_{n}\).
Find \(\overline{\lim } x_{n}\) and \(\underline{\lim} x_{n}\) if
(a) \(x_{n}=c\) (constant);
(b) \(x_{n}=-n\) ;
(c) \(x_{n}=n ;\) and
(d) \(x_{n}=(-1)^{n} n-n\)
Does \(\lim x_{n}\) exist in each case?
\(\Rightarrow 4 .\) A sequence \(\left\{x_{n}\right\}\) is said to cluster at \(q \in E^{*},\) and \(q\) is called its cluster point, iff each \(G_{q}\) contains \(x_{n}\) for infinitely many values of \(n\).
Show that both \(\underline{L}\) and \(\overline{L}\) are cluster points \((\underline{L} \text { the least and } \overline{L} \text { the }\) largest).
[Hint: Use Theorem 2 and its analogue for \(\underline{L}\).
To show that no \(p<\underline{L}\) (or \(q>\overline{L} )\) is a cluster point, assume the opposite and find a contradiction to Corollary 2.]
\(\Rightarrow 5 .\) Prove that
(i) \(\overline{\lim} \left(-x_{n}\right)=-\underline{\lim} x_{n}\) and
(ii) \(\overline{\lim} \left(a x_{n}\right)=a \cdot \overline{\lim } x_{n}\) if \(0 \leq a<+\infty\).
Prove that
\[
\overline{\lim } x_{n}<+\infty\left(\underline{\lim} x_{n}>-\infty\right)
\]
iff \(\left\{x_{n}\right\}\) is bounded above (below) in \(E^{1}\).
Prove that if \(\left\{x_{n}\right\}\) and \(\left\{y_{n}\right\}\) are bounded in \(E^{1},\) then
\[
\overline{\lim } x_{n}+\overline{\lim } y_{n} \geq \overline{\lim }\left(x_{n}+y_{n}\right) \geq \overline{\lim } x_{n}+\underline{\lim} y_{n} \geq \underline{\lim} (x_{n} + y_{n}) \geq \underline{\lim} x_{n} + \underline{\lim} y_{n}.
\]
[Hint: Prove the first inequality and then use that and Problem 5\((\mathrm{i})\) for the others.]
\(\Rightarrow 8 .\) Prove that if \(p=\lim x_{n}\) in \(E^{1},\) then
\[
\underline{\lim} (x_{n} + y_{n}) = p + \underline{\lim} y_{n};
\]
similarly for \(\overline{L}\).
\(\Rightarrow 9 .\) Prove that if \(\left\{x_{n}\right\}\) is monotone, then \(\lim x_{n}\) exists \(i n E^{*} .\) Specifically, if \(\left\{x_{n}\right\} \uparrow,\) then
\[
\lim x_{n}=\sup _{n} x_{n},
\]
and if \(\left\{x_{n}\right\} \downarrow,\) then
\[
\lim x_{n}=\inf _{n} x_{n}.
\]
\(\Rightarrow 10 .\) Prove that
(i) if lim \(x_{n}=+\infty\) and \((\forall n) x_{n} \leq y_{n},\) then also \(\lim y_{n}=+\infty,\) and
(ii) if \(\lim x_{n}=-\infty\) and \((\forall n) y_{n} \leq x_{n},\) then also \(\lim y_{n}=-\infty\).
Prove that if \(x_{n} \leq y_{n}\) for all \(n,\) then
\[
\underline{\lim} x_{n} \leq \underline{\lim} y_{n} \text{ and } \overline{\lim} x_{n} \leq \overline{\lim} y_{n}.
\]