Skip to main content
Mathematics LibreTexts

3.5.E: Problems on Linear Spaces (Exercises)

  • Page ID
    22263
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Prove that \(F^{n}\) in Example \((\mathrm{b})\) is a vector space, i.e., that it satisfies all laws stated in Theorem 1 in §§1-3; similarly for \(W\) in Example (d).

    Exercise \(\PageIndex{2}\)

    Verify that dot products in \(C^{n}\) obey the laws \((\mathrm{i})-\left(\mathrm{v}^{\prime}\right) .\) Which of these laws would fail if these products were defined by
    \[
    x \cdot y=\sum_{k=1}^{n} x_{k} y_{k} \text { instead of } x \cdot y=\sum_{k=1}^{n} x_{k} \overline{y}_{k} ?
    \]
    How would this affect the properties of absolute values given in \(\left(\mathrm{a}^{\prime}\right)-\left(\mathrm{d}^{\prime}\right) ?\)

    Exercise \(\PageIndex{3}\)

    Complete the proof of formulas \(\left(\mathrm{a}^{\prime}\right)-\left(\mathrm{d}^{\prime}\right)\) for Euclidean spaces. What change would result if property (ii) of dot products were restated as
    \[
    " x \cdot x \geq 0 \text { and } \overrightarrow{0} \cdot \overrightarrow{0}=0^{\prime \prime} ?
    \]

    Exercise \(\PageIndex{4}\)

    Define orthogonality, parallelism and angles in a general Euclidean space following the pattern of §§1-3 (text and Problem 7 there). Show that \(u=\overrightarrow{0}\) iff \(u\) is orthogonal to all vectors of the space.

    Exercise \(\PageIndex{5}\)

    Define the basic unit vectors \(e_{k}\) in \(C^{n}\) exactly as in \(E^{n},\) and prove
    Theorem 2 in §§1-3 for \(C^{n}\left(\text { replacing } E^{1} \text { by } C\right).\) Also, do Problem 5\((\mathrm{a})\) of §§1-3 for \(C^{n}\).

    Exercise \(\PageIndex{6}\)

    Define hyperplanes in \(C^{n}\) as in Definition 3 of §§4-6, and prove Theorem 1 stated there, for \(C^{n} .\) Do also Problems \(4-6\) there for \(C^{n}\) (replacing \(E^{1}\) by \(C )\) and Problem 4 there for vector spaces in general (replacing \(E^{1}\) by the scalar field \(F ) .\)

    Exercise \(\PageIndex{7}\)

    Do Problem 3 of §§4-6 for general Euclidean spaces (real or complex). Note: Do not replace \(E^{1}\) by \(C\) in the definition of a line and a line segment.

    Exercise \(\PageIndex{8}\)

    A finite set of vectors \(B=\left\{x_{1}, \ldots, x_{m}\right\}\) in a linear space \(V\) over \(F\) is said to be independent iff
    \[
    \left(\forall a_{1}, a_{2}, \ldots, a_{m} \in F\right) \quad\left(\sum_{i=1}^{m} a_{i} x_{i}=\overrightarrow{0} \Longrightarrow a_{1}=a_{2}=\cdots=a_{m}=0\right).
    \]
    Prove that if \(B\) is independent, then
    (i) \(\overrightarrow{0} \notin B\);
    (ii) each subset of \(B\) is independent \((\emptyset \text { counts as independent }) ;\) and
    (iii) if for some scalars \(a_{i}, b_{i} \in F\),
    \[
    \sum_{i=1}^{m} a_{i} x_{i}=\sum_{i=1}^{m} b_{i} x_{i},
    \]
    then \(a_{i}=b_{i}, i=1,2, \ldots, m\).

    Exercise \(\PageIndex{9}\)

    Let \(V\) be a vector space over \(F\) and let \(A \subseteq V .\) By the span of \(A\) in \(V\), denoted \(\operatorname{span}(A),\) is meant the set of all "linear combinations" of vectors from \(A,\) i.e., all vectors of the form
    \[
    \sum_{i=1}^{m} a_{i} x_{i}, \quad a_{i} \in F, x_{i} \in A, m \in N.
    \]
    Show that \(\operatorname{span}(A)\) is itself a vector space \(V^{\prime} \subseteq V\) (a subspace of \(V )\) over the same field \(F,\) with the operations defined in \(V .\) (We say that A spans \(V^{\prime} .\) Show that in \(E^{n}\) and \(C^{n},\) the basic unit vectors span the entire space.


    3.5.E: Problems on Linear Spaces (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?