9.2.E: Problems on L-Integrals and Absolute Continuity
- Page ID
- 25153
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Fill in all details in the proof of Lemma 1 and of Theorems 3 and 4 from §1.
Prove Theorem 1 and Corollaries 1, 2, and 5.
Disprove the converse to Corollary 4. (Give an example!)
\(\Rightarrow 3\). Show that if \(F: E^{1} \rightarrow E\) is L-integrable on \(A=[a, b]\) and continuous at \(p \in A,\) then \(p\) is an L-point of \(F .\)
[Hint: Use the \(\varepsilon, \delta \text { definition of continuity. }]\)
Complete all proof details for Lemma \(2,\) Theorems 3 and \(4,\) and Corollary \(3 .\)
Let \(F=1\) on \(R(=\text { rationals })\) and \(F=0\) on \(E^{1}-R\) (Dirichlet function).
Show that \(F\) has exactly three derivates \((0,+\infty, \text { and }-\infty)\) at every \(p \in E^{1} .\)
\(\Rightarrow 6\). We say that \(F\) is a Lipschitz map, or has the uniform Lipschitz property on \(A,\) iff
\[
\left(\exists K \in E^{1}\right)(\forall x, y \in A) \quad|F(x)-F(y)| \leq K|x-y| .
\]
Prove the following:
(i) Any such \(F\) is absolutely continuous on \(A=[a, b]\).
(ii) If all derivates of \(f\) satisfy
\[
|D f(x)| \leq k<\infty, \quad x \in A=[a, b] ,
\]
then \(f\) is a Lipschitz map on \(A\).
\(\Rightarrow 7\). Let \(g: E^{1} \rightarrow E^{1}\) and \(f: E^{1} \rightarrow E\) (real or not) be absolutely continuous on \(A=[a, b]\) and \(g[A],\) respectively.
Prove that \(h=f \circ g\) is absolutely continuous on \(A,\) provided that either \(f\) is as in Problem \(6,\) or \(g\) is strictly monotone on \(A .\)
Prove that if \(F: E^{1} \rightarrow E^{1}\) is absolutely continuous on \(A=[a, b],\) if \(Q \subseteq A,\) and if \(m Q=0,\) then \(m^{*} F[Q]=0(m=\) Lebesgue measure).
[Outline: We may assume \(Q \subseteq(a, b) .\) (Why?)
\(\quad\) Fix \(\varepsilon>0\) and take \(\delta\) as in Definition 2. As \(m\) is regular, there is an open \(G\),
\[
Q \subseteq G \subseteq(a, b) ,
\]
with \(m G<\delta .\) By Lemma 2 of Chapter 7, §2,
\[
G=\bigcup_{k=1}^{\infty} I_{k}(\text {disjoint})
\]
for some \(I_{k}=\left(a_{k}, b_{k}\right]\).
\(\quad\) Let \(u_{k}=\inf F\left[I_{k}\right], v_{k}=\sup F\left[I_{k}\right] ;\) so
\[
F\left[I_{k}\right] \subseteq\left[u_{k}, v_{k}\right]
\]
and
\[
m^{*} F\left[I_{k}\right] \leq v_{k}-u_{k} .
\]
Also,
\[
\sum\left(b_{k}-a_{k}\right)=\sum m I_{k}=m G<\delta .
\]
From Definition \(2,\) show that
\[
\sum_{k=1}^{\infty}\left(v_{k}-u_{k}\right) \leq \varepsilon
\]
(first consider partial sums). As
\[
F[Q] \subseteq F[G] \subseteq \bigcup_{k} F\left[I_{k}\right] ,
\]
get
\[
\left.m^{*} F[Q] \leq \sum_{k} m^{*} F\left[I_{k}\right]=\sum_{k}\left(v_{k}-u_{k}\right) \leq \varepsilon \rightarrow 0 .\right]
\]
Show that if \(F\) is as in Problem 8 and if
\[
A=[a, b] \supseteq B, \quad B \in \mathcal{M}^{*}
\]
(L-measurable sets), then
\[
F[B] \in \mathcal{M}^{*} .
\]
\(\left(" F \text { preserves } \mathcal{M}^{*} \text {-sets." }\right)\)
[Outline: (i) If \(B\) is closed, it is compact, and so is \(F[B]\) (Theorems 1 and 4 of Chapter 4, §6).
(ii) If \(B \in \mathcal{F}_{\sigma},\) then
\[
B=\bigcup_{i} B_{i}, \quad B_{i} \in \mathcal{F} ;
\]
so by (i),
\[
F[B]=\bigcup_{i} F\left[B_{i}\right] \in \mathcal{F}_{\sigma} \subseteq \mathcal{M}^{*} .
\]
(iii) If \(B \in \mathcal{M}^{*},\) then by Theorem 2 of Chapter 7, §8,
\[
\left(\exists K \in \mathcal{F}_{\sigma}\right) \quad K \subseteq B, m(B-K)=0 .
\]
Now use Problem \(8, \text { with } Q=B-K .]\)
\(\Rightarrow 10\). (Change of variable.) Suppose \(g: E^{1} \rightarrow E^{1}\) is absolutely continuous and one-to-one on \(A=[a, b],\) while \(f: E^{1} \rightarrow E^{*}\left(E^{n}, C^{n}\right)\) is L-integrable on \(g[A] .\)
Prove that \((f \circ g) g^{\prime}\) is L-integrable on \(A\) and
\[
L \int_{a}^{b}(f \circ g) g^{\prime}=L \int_{p}^{q} f ,
\]
where \(p=g(a)\) and \(q=g(b)\).
[Hints: Let \(F=L \int f\) and \(H=F \circ g\) on \(A .\)
By Theorems 2 and 3 and Problem 7 (end), \(F\) and \(H\) are absolutely continuous on \(g[A]\) and \(A,\) respectively; and \(H^{\prime}\) is L-integrable on \(A .\) So by Theorem 3
\[
H=L \int H^{\prime}=L \int(f \circ g) g^{\prime} ,
\]
as \(\left.H^{\prime}=(f \circ g) g^{\prime} \text { a.e. on } A .\right]\)
Setting \(f(x)=0\) if not defined otherwise, find the intervals (if any) on which \(f\) is absolutely continuous if \(f(x)\) is defined by
(a) \(\sin x\);
(b) \(\cos 2 x\);
(c) \(1 / x\);
(d) \(\tan x\);
(e) \(x^{x}\);
(f) \(x \sin (1 / x)\);
(g) \(x^{2} \sin x^{-2}(\text { Problem } 5 \text { in } §1)\);
(h) \(\left.\sqrt{x^{3}} \cdot \sin (1 / x) \text { (verify that }\left|f^{\prime}(x)\right| \leq \frac{3}{2}+x^{-\frac{1}{2}}\right)\);
[Hint: Use Problems 6 and 7.]