Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

9: Back to the Real Numbers

( \newcommand{\kernel}{\mathrm{null}\,}\)

  • 9.1: Trigonometric Series
    As we have seen, when they converge, power series are very well behaved and Fourier (trigonometric) series are not necessarily. The fact that trigonometric series were so interesting made them a lightning rod for mathematical study in the late nineteenth century.
  • 9.2: Infinite Sets
    All of our efforts to build an uncountable set from a countable one have come to nothing. In fact many sets that at first “feel” like they should be uncountable are in fact countable. This makes the uncountability of R all the more remarkable. However if we start with an uncountable set it is relatively easy to build others from it.
  • 9.3: Cantor’s Theorem and Its Consequences
    Once Cantor showed that there were two types of infinity (countable and uncountable), the following question was natural, “Do all uncountable sets have the same cardinality?”

Thumbnail: Georg Cantor, German mathematician and philosopher of mixed Jewish-Danish-Russian heritage, the creator of set theory. (public domain).


This page titled 9: Back to the Real Numbers is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eugene Boman and Robert Rogers (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?