3.4: Method of Undetermined Coefficients
- Page ID
- 403
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Up to now, we have considered homogeneous second order differential equations. In this discussion, we will investigate nonhomogeneous second order linear differential equations.
Let
\[ L(y) = y'' + p(t)y' + q(t)y = g(t) \]
be a second order linear differential equation with p, q, and g continuous and let
\[ L(y_1) = L(y_2) = 0 \;\;\; \text{and} \;\;\; L(y_p) = g(t)\]
and let
\[ y_h = c_1y_1 + c_2y_2. \]
Then the general solution is given by
\[ y = y_h + y_p .\]
Since \(L\) is a linear transformation,
\[\begin{align*} L(y_h + y_p) &= C_1L(y_1) + C_2L(y_2) + L(y_h)\\[4pt] &= C_1(0) + C_2(0) + g(t) = g(t). \end{align*}\]
This establishes that \(y_h + y_p\) is a solution. Next we need to show that all solutions are of this form. Suppose that \(y_3\) is a solution to the nonhomogeneous differential equation. Then we need to show that
\[ y_3 = y_h + y_p \]
for some constants \(c_1\) and \(c_2\) with
\[ y_h = c_1y_1 + c_2y_2. \]
This is equivalent to
\[ y_3 - y_p = y_h .\]
We have
\[ L(y_3 - y_p) = L(y_3) - L(y_p) = g(t) - g(t) = 0. \]
Therefore \(y_3 - y_p\) is a solution to the homogeneous solution. We can conclude that
\[y_3 - y_p = c_1y_1 + c_2y_2 = y_h.\]
\(\square\)
This theorem provides us with a practical way of finding the general solution to a nonhomogeneous differential equation.
- Step 1: Find the general solution \(y_h\) to the homogeneous differential equation.
- Step 2: Find a particular solution \(y_p\) to the nonhomogeneous differential equation.
- Step 3: Add \(y_h + y_p\).
We have already learned how to do Step 1 for constant coefficients. We will now embark on a discussion of Step 2 for some special functions \( g(t) \).
A function \(g(t)\) generates a UC-set if the vector space of functions generated by \(g(t)\) and all the derivatives of \(g(t)\) is finite dimensional.
Let \( g(t) = t \sin(3t) \).
Then
\[\begin{align*} g'(t) &= \sin(3t) + 3t \cos(3t) & g''(t) &= 6 \cos(3t) - 9t \sin(3t) \\ g^{(3)} (t) &= -27 \sin(3t) - 27t \cos(3t) & g^{(4)}(t) &= 81 \cos(3t) - 108t \sin(3t) \\ g^{(4)} (t) &= 405 \sin(3t) - 243t \cos(3t) & g^{(5)}(t) &= 1458 \cos(3t) - 729t \cos(3t) \end{align*}\]
We can see that \(g(t)\) and all of its derivative can be written in the form
\[ g^{(n)} (t) = A \sin(3t) + B \cos(3t) + Ct \sin(3t) + Dt \cos(3t). \]
We can say that \( \left \{ \sin(3t), \cos(3t), t \sin(3t), t \cos(3t) \right \} \) is a basis for the UC-Set.
We now state without proof the following theorem tells us how to find the particular solution of a nonhomogeneous second order linear differential equation.
Let
\[ L(y) = ay'' + by' + cy = g(t) \]
be a nonhomogeneous linear second order differential equation with constant coefficients such that g(t) generates a UC-Set
\[ {f_1(t), f_2(t), ...f_n(t)} \]
Then there exists a whole number s such that
\[ y_p = t^s[c_1f_1(t) + c_2f_2(t) + ... + c_nf_n(t)] \]
is a particular solution of the differential equation.
Remark: The "s" will come into play when the homogeneous solution is also in the UC-Set.
Find the general solution of the differential equation
\[ y'' + y' - 2y = e^{-t} \text{sin}\, t .\]
Solution
First find the solution to the homogeneous differential equation
\[ y'' + y' - 2y = 0 .\]
We have
\[ r^2 + r - 2 = (r - 1)(r + 2) = 0 \]
\[ r = -2 \;\;\; \text{or} \;\;\; r = 1.\]
Thus
\[ y_h = c_1 e^{-2t} + c_2 e^t .\]
Next notice that \( e^{-t} \sin t \) and all of its derivatives are of the form
\[ A e^{-t} \sin t + B e^{-t} \cos t .\]
We set
\[y_p = A e^{-t} \sin t + B e^{-t} \cos t \]
and find
\[ \begin{align*} y'_p &= A ( -e^{-t} \sin t + e^{-t} \cos t) + B (-e^{-t} \cos t - e^{-t} \sin t ) \\[4pt] &= -(A + B)e^{-t} \sin t + (A - B)e^{-t} \cos t \end{align*}\]
and
\[\begin{align*} y''_p &= -(A + B)(-e^{-t} \sin t + e^{-t} \cos t ) + (A - B)(-e^{-t} \cos t - e^{-t} \sin t ) \\ &= [(A + B) - (A - B)] e^{-t} \sin t + [-(A + B) - (A - B) ] e^{-t} \cos t \\ &= 2B e^{-t} \sin t - 2A e^{-t} \cos t . \end{align*}\]
Now put these into the original differential equation to get
\[ 2B e^{-t} \sin t - 2A e^{-t} \cos t + -(A + B)e^{-t} \sin t + (A - B) e^{-t} \cos t - 2(A e^{-t} \sin t + B e^{-t} \cos t) = e^{-t} \sin t. \]
Combine like terms to get
\[ (2B - A - B - 2A) e^{-t} \sin t + ( -2A + A - B - 2B) e^{-t} \cos t = e^{-t} \sin t \]
or
\[ (-3A + B) e^{-t} \sin t + (-A - 3B) e^{-t} \cos t = e^{-t} \sin t. \]
Equating coefficients, we get
\[-3A + B = 1 \;\;\; \text{and} \;\;\; -A - 3B = 0.\]
This system has solution
\[ A = - \frac {3}{10}, \;\;\; B = \frac{1}{10}. \]
The particular solution is
\[ y_p = - \frac {3}{10} e^{-t} \sin t + \frac {1}{10} e^{-t} \cos t. \]
Adding the particular solution to the homogeneous solution gives
\[ y = y_h + y_p = c_1 e^{-2t} + c_2 e^{t} + - \frac {3}{10} e^{-t} \sin t + \frac {1}{10} e^{-t} \cos t. \]
Solve
\[ y'' + y = 5 \, \sin t. \label{ex3.1}\]
Solution
The characteristic equation is
\[ r^2 + 1 = 0. \nonumber\]
Which has the complex roots
\[ r = i \;\;\; \text{or} \;\;\; r = -i . \nonumber\]
The homogeneous solution is
\[ y_h = c_1 \sin t + c_2 \cos t. \nonumber \]
The UC-Set for \(\sin t\) is \( \left \{ \sin t , \cos t \right \} \). Derivatives are all \( \sin \) and \( \cos \) functions
Notice that both of the functions in the UC-Set are solutions to the homogeneous differential equation. We need to multiply by \(t\) to get
\[ \left \{ t \sin t, t \cos t \right \}. \nonumber\]
The particular solution is
\[\begin{align*} y_p &= At \, \sin t + B \cos t \\[4pt] y_p' &= A \sin t + At \cos t + B \cos t - Bt \sin t \\[4pt] y_p'' &= A \cos t + A \cos t - At \sin t - B\, \sin t - B\sin t - Bt \cos t \\[4pt]&= 2A \cos t - At \sin t - 2B \sin t - Bt \cos t. \end{align*}\]
Now put these back into the original differential equation (Equation \ref{ex3.1}) to get
\[\begin{align*} 2A \cos t - At \sin t -2B \sin t - Bt \cos t + At \sin t + Bt \cos t &= 5 \sin t \\[4pt] 2A \cos t - 2B \sin t &= 5 \sin t. \end{align*}\]
Equating coefficients gives
\[ 2A = 0 \;\;\; \text{and} \;\;\; -2 B = 5. \]
So
\[ A = 0 \;\;\; \text{and} \;\;\; B = - \frac {2}{5}. \]
We have
\[ y_p = - \frac {2}{5} \cos t. \]
Adding \( y_p\) to \(y_h \) gives
\[ y = c_1 \sin t + c_2 \cos t - \frac {2}{5} \cos t. \]
Contributors and Attributions
- Larry Green (Lake Tahoe Community College)
Integrated by Justin Marshall.