5.3: The Szegö Kernel
- Page ID
- 74243
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We use the same technique to create a reproducing kernel on the boundary by starting with \(L^2(\partial U, d\sigma)\) instead of \(L^2(U)\). We obtain a kernel where we integrate over the boundary rather than the domain itself. Let us give a quick overview, but let us not get into the details.
Let \(U \subset \mathbb{C}^n\) be a bounded domain with smooth boundary. Let \(C(\overline{U}) \cap \mathcal{O}(U)\) be the holomorphic functions in \(U\) continuous up to the boundary. The restriction of \(f \in C(\overline{U}) \cap \mathcal{O}(U)\) to \(\partial U\) is a continuous function, and hence \(f|_{\partial U}\) is in \(L^2(\partial U,d\sigma)\), where \(d\sigma\) is the surface measure on \(\partial U\). Taking a closure of these restrictions in \(L^2(\partial U)\) obtains the Hilbert space \(H^2(\partial U)\), which is called the Hardy space. The inner product on \(H^2(\partial U)\) is the \(L^2(\partial U, d\sigma)\) inner product: \[\langle f,g\rangle \overset{\text{def}}{=} \int_{\partial U} f(z) \overline{g(z)} \, d\sigma(z) .\]
Show that monomials \(z^\alpha\) are a complete orthonormal system in \(H^2(\partial \mathbb{B}_{n})\).
Let \(U \subset \mathbb{C}^n\) be a bounded domain with smooth boundary. Prove that \(H^2(\partial U)\) is infinite-dimensional.
Given an \(f \in H^2(\partial U)\), write the Poisson integral \[Pf(z) = \int_{\partial U} f(\zeta) \, P(z,\zeta) \, d \sigma(\zeta) ,\] where \(P(z,\zeta)\) is the Poisson kernel. The Poisson integral reproduces harmonic functions. As holomorphic functions are harmonic, we find that if \(f \in C(\overline{U}) \cap \mathcal{O}(U)\), then \(Pf = f\).
Although \(f \in H^2(\partial U)\) is only defined on the boundary, through the Poisson integral, we have the values \(Pf(z)\) for \(z \in U\). For each \(z \in U\), \[f \mapsto Pf(z)\] defines a continuous linear functional. Again we find a \(s_z \in H^2(\partial U)\) such that \[Pf(z) = \langle f, s_z\rangle .\] For \(z \in U\) and \(\zeta \in \partial U\), define \[S_U(z,\bar{\zeta}) \overset{\text{def}}{=} \overline{s_z(\zeta)} ,\] although for a fixed \(z\) this is a function only defined almost everywhere as it is an element of \(L^2(\partial U,d\sigma)\). The function \(S_U\) is the Szegö kernel. If \(f \in H^2(\partial U)\), then \[Pf(z) = \int_{\partial U} f(\zeta) \, S_U(z,\bar{\zeta}) \, d\sigma(\zeta) .\]
As functions in \(H^2(\partial U)\) extend to \(\overline{U}\), then \(f \in H^2(\partial U)\) may be considered a function on \(\overline{U}\), where values in \(U\) are given by \(Pf\). Similarly, we extend \(S(z,\bar{\zeta})\) to a function on \(U \times \overline{U}^*\) (where the values on the boundary are defined only almost everywhere). We state without proof that if \(\{ \varphi_j \}_{j\in I}\) is a complete orthonormal system for \(H^2(\partial U)\), then \[\label{eq:2} S_U(z,\bar{\zeta}) = \sum_{j \in I} \varphi_j(z)\overline{\varphi_j(\zeta)}\] for \((z,\bar{\zeta}) \in U \times U^*\), converging uniformly on compact subsets. As before, this formula shows that \(S\) is conjugate symmetric, and so it extends to \((U \times \overline{U}^*) \cup (\overline{U} \times U^*)\).
In Exercise 5.2.3, we computed that if \(f \in C(\overline{\mathbb{D}}) \cap \mathcal{O}(\mathbb{D})\), then \[f(z) = \frac{1}{2\pi} \int_{\partial \mathbb{D}} \frac{f(\zeta)}{1-z\bar{\zeta}} \, ds . \] In other words, \(S_{\mathbb{D}}(z,\zeta) = \frac{1}{\pi} \frac{1}{1-z\bar{\zeta}}\) .
Using the formula \(\eqref{eq:2}\) compute \(S_{\mathbb{B}_{n}}\).