Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

15R: Chapter 15 Review Exercises

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    True or False? Justify your answer with a proof or a counterexample.

    1. \(\displaystyle ∫_a^b∫_c^d f(x,y) \, dy \, dx = ∫_c^d∫_a^b f(x,y) \, dy \, dx\)

    2. Fubini’s theorem can be extended to three dimensions, as long as \(f\) is continuous in all variables.


    3. The integral \(\displaystyle ∫_0^{2π}∫_0^1∫_r^1 \,dz \, dr \, dθ\) represents the volume of a right cone.

    4. The Jacobian of the transformation for \(x=u^2−2v, \, y=3v−2uv\) is given by \(−4u^2+6u+4v.\)



    Evaluate the following integrals.

    5. \(\displaystyle \iint_R (5x^3y^2−y^2) \, dA,\) where \(R=\big\{(x,y) \,|\, 0≤x≤2,\, 1≤y≤4\big\}\)

    6. \(\displaystyle \iint_D \dfrac{y}{3x^2+1} \, dA,\) where \( D=\big\{(x,y) \,|\, 0≤x≤1, \, −x≤y≤x\big\}\)


    7. \(\displaystyle \iint_D \sin(x^2+y^2) \, dA\) where \(D\) is a disk of radius \(2\) centered at the origin.

    8. \(\displaystyle \int_0^1\int_y^1 xye^{x^2}\,dx \, dy\)


    9. \(\displaystyle \int_{−1}^1\int_0^z\int_0^{x−z} 6 \, dy \, dx\, dz\)

    10. \(\displaystyle \iiint_R 3y \, dV,\) where \(R=\big\{(x,y,z) \,|\, 0≤x≤1, \, 0≤y≤x, \, 0≤z≤9−y^2\big\}\)


    11. \(\displaystyle \int_0^2\int_0^{2π}\int_r^1 r \, dz \, dθ \, dr\)

    12. \(\displaystyle \int_0^{2π}\int_0^{π/2}\int_1^3 ρ^2\sin(φ) \, dρ \, dφ \, dθ\)


    13. \(\displaystyle \int_0^1\int_{−\sqrt{1−x^2}}^{\sqrt{1−x^2}}\int_{−\sqrt{1−x^2−y^2}}^{\sqrt{1−x^2−y^2}} \, dz \, dy \, dx\)


    For the following problems, find the specified area or volume.

    14. The area of region enclosed by one petal of \(r=\cos(4θ).\)

    \(\frac{\pi}{16} \text{ units}^3\)

    15. The volume of the solid that lies between the paraboloid \(z=2x^2+2y^2\) and the plane \(z=8.\)

    16. The volume of the solid bounded by the cylinder \(x^2+y^2=16\) and from \(z=1\) to \(z+x=2.\)

    \(93.291 \text{ units}^3\)

    17. The volume of the intersection between two spheres of radius \(1,\) the top whose center is \((0,\,0,\,0.25)\) and the bottom, which is centered at \((0,\,0,\,0).\)


    For the following problems, find the center of mass of the region.

    18. \(ρ(x,y)=xy\) on the circle with radius \(1\) in the first quadrant only.

    \( \left( \frac{8}{15}, \, \frac{8}{15} \right) \)

    19. \(ρ(x,y)=(y+1)\sqrt{x}\) in the region bounded by \(y=e^x, \, y=0,\) and \(x=1.\)

    20. \(ρ(x,y,z)=z\) on the inverted cone with radius \(2\) and height \(2.\)

    \( \left( 0, \, 0, \, \frac{8}{5} \right) \)

    21. The volume an ice cream cone that is given by the solid above \(z=\sqrt{x^2+y^2}\) and below \(z^2+x^2+y^2=z.\)


    The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski resort. The shape of Mount Holly can be approximated by a right circular cone of height 1100 ft and radius 6000 ft.

    22. If the compacted trash used to build Mount Holly on average has a density \(400\text{ lb/ft}^3,\) find the amount of work required to build the mountain.

    \(1.452\pi \times 10^{15}\) ft-lb

    23. In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the above trash. Consider a density function with respect to height: the density at the top of the mountain is still density \(400\text{ lb/ft}^3,\) and the density increases. Every 100 feet deeper, the density doubles. What is the total weight of Mount Holly?


    The following problems consider the temperature and density of Earth’s layers.

    24. [T] The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree 3 to the temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at 0 in the inner core and increase outward toward the surface)

    Layer Depth from center (km) Temperature °C
    Rocky Crust 0 to 40 0
    Upper Mantle 40 to 150 870
    Mantle 400 to 650 870
    Inner Mantel 650 to 2700 870
    Molten Outer Core 2890 to 5150 4300
    Inner Core 5150 to 6378 7200
    The average temperature is approximately 2800 °C.

    25. [T] The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit quadratic equation to the density. Using this equation, find the total mass of Earth.

    Layer Depth from center (km) Density (\(\text{g/cm}^3\))
    Inner Core 0 12.95
    Outer Core 1228 11.05
    Mantle 3488 5.00
    Upper Mantle 6338 3.90
    Crust 6378 2.55


    The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for calculating volume using centroids. Assuming a region \(R,\) when you revolve around the \(x\)-axis the volume is given by \(V_x=2πA\overline{y},\) and when you revolve around the \(y\)-axis the volume is given by \(V_y=2πA\overline{x},\) where \(A\) is the area of \(R.\) Consider the region bounded by \(x^2+y^2=1\) and above \(y=x+1.\)

    26. Find the volume when you revolve the region around the \(x\)-axis.

    \(\frac{\pi}{3} \text{ units}^3\)

    27. Find the volume when you revolve the region around the \(y\)-axis.

    15R: Chapter 15 Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?