Skip to main content
Mathematics LibreTexts

A.9: Inverse Trigonometric Functions

  • Page ID
    91825
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Some of you may not have studied inverse trigonometric functions in highschool, however we still expect you to know them by the end of the course.

    \[ \arcsin x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)

    \[ \arccos x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(0 \leq \arccos x \leq \pi\)

    \[ \arctan x \nonumber \]

    Domain: all real numbers

    Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)

    Since these functions are inverses of each other we have

    \begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \end{align*}

    and also

    \begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real } x \end{align*}

    \[ \textrm{arccsc}\, x \nonumber \]

    Domain: \(|x|\ge 1\)

    Range: \(-\frac{\pi}{2} \leq \textrm{arccsc}\, x \leq \frac{\pi}{2}\)

    \[ \textrm{arccsc}\, x \ne 0 \nonumber \]

    \[ \textrm{arcsec}\, x \nonumber \]

    Domain: \(|x|\ge 1\)

    Range: \(0 \leq \textrm{arcsec}\, x \leq \pi\)

    \[ \textrm{arcsec}\, x \ne \frac{\pi}{2} \nonumber \]

    \[ \textrm{arccot}\, x \nonumber \]

    Domain: all real numbers

    Range: \(0 \lt \textrm{arccot}\, x \lt \pi\)

    Again

    \begin{align*} \textrm{arccsc}\,(\csc \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},\ \theta\ne 0\\ \textrm{arcsec}\,(\sec \theta) & = \theta & 0 \leq \theta \leq \pi,\ \theta\ne \frac{\pi}{2}\\ \textrm{arccot}\,(\cot \theta) & = \theta & 0 \lt \theta \lt \pi \end{align*}

    and

    \begin{align*} \csc(\textrm{arccsc}\, x) &= x & |x|\ge 1\\ \sec(\textrm{arcsec}\, x) &= x & |x|\ge 1\\ \cot(\textrm{arccot}\, x) &= x & \text{any real } x \end{align*}


    This page titled A.9: Inverse Trigonometric Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?