Skip to main content
Mathematics LibreTexts

1.11: Optional — The Astroid

  • Page ID
    92313
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Imagine a ball of radius \(a/4\) rolling around the inside of a circle of radius \(a\text{.}\) The curve traced by a point \(P\) painted on the inner circle (that's the blue curve in the figures below) is called an astroid 1. We shall find its equation.

    astroid1AA.svgastroid1BB.svgastroid1CC.svg

    astroid1DD.svgastroid1EE.svgastroid1FF.svg

    Define the angles \(\theta\) and \(\phi\) as in the figure in the left below.

    astroid.svg           astroid3.svg

    That is

    • the vector from the centre, \(O\text{,}\) of the circle of radius \(a\) to the centre, \(Q\text{,}\) of the ball of radius \(a/4\) is \(\frac{3}{4}a\big(\cos\theta,\sin\theta\big)\) and
    • the vector from the centre, \(Q\text{,}\) of the ball of radius \(a/4\) to the point \(P\) is \(\frac{1}{4}a\big(\cos\phi,-\sin\phi\big)\)

    As \(\theta\) runs from 0 to \(\frac{\pi}{2}\text{,}\) the point of contact between the two circles travels through one quarter of the circumference of the circle of radius \(a\text{,}\) which is a distance \(\frac{1}{4}(2\pi a)\text{,}\) which, in turn, is exactly the circumference of the inner circle. Hence if \(\phi=0\) for \(\theta=0\) (i.e. if \(P\) starts on the \(x\)-axis), then for \(\theta=\frac{\pi}{2}\text{,}\) \(P\) is back in contact with the big circle at the north pole of both the inner and outer circles. That is, \(\phi=\frac{3\pi}{2}\) when \(\theta=\frac{\pi}{2}\text{.}\) (See the figure on the right above.) So \(\phi=3\theta\) and \(P\) has coordinates

    \[ \frac{3}{4}a\big(\cos\theta,\sin\theta\big) +\frac{1}{4}a\big(\cos\phi,-\sin\phi\big) =\frac{a}{4}\big(3\cos\theta+\cos 3\theta,3\sin\theta-\sin 3\theta\big) \nonumber \]

    As, recalling your double angle, or even better your triple angle, trig identities,

    \[\begin{align*} \cos3\theta&=\cos\theta\cos2\theta-\sin\theta\sin 2\theta\\ &=\cos\theta[\cos^2\theta-\sin^2\theta]-2\sin^2\theta\cos\theta\\ &=\cos\theta[\cos^2\theta-3\sin^2\theta]\\ \sin3\theta&=\sin\theta\cos2\theta+\cos\theta\sin 2\theta\\ &=\sin\theta[\cos^2\theta-\sin^2\theta]+2\sin\theta\cos^2\theta\\ &=\sin\theta[3\cos^2\theta-\sin^2\theta] \end{align*}\]

    we have

    \[\begin{alignat*}{2} 3\cos\theta+\cos 3\theta &=\cos\theta[3+\cos^2\theta-3\sin^2\theta] & &=\cos\theta[3+\cos^2\theta-3(1-\cos^2\theta)] \\ &=4\cos^3\theta\\ 3\sin\theta-\sin 3\theta &=\sin\theta[3-3\cos^2\theta+\sin^2\theta] & &=\sin\theta[3-3(1-\sin^2\theta)+\sin^2\theta] \\ &=4\sin^3\theta \end{alignat*}\]

    and the coordinates of \(P\) simplify to

    \[ x(\theta)= a\cos^3\theta\qquad y(\theta)=a\sin^3\theta \nonumber \]

    Oof! As \(\ x^{2/3}+y^{2/3}=a^{2/3}\cos^2\theta+a^{2/3}\sin^2\theta \ ,\) the path traced by \(P\) obeys the equation

    \[ x^{2/3}+y^{2/3} =a^{2/3} \nonumber \]

    which is surprisingly simple, considering what we went through to get here.

    There remains the danger that there could exist points \((x,y)\) obeying the equation \(x^{2/3}+y^{2/3}=a^{2/3}\) that are not of the form \(x= a\cos^3\theta,\ y=a\sin^3\theta\) for any \(\theta\text{.}\) That is, there is a danger that the parametrized curve \(x= a\cos^3\theta,\ y=a\sin^3\theta\) covers only a portion of \(x^{2/3}+y^{2/3}=a^{2/3}\text{.}\) We now show that the parametrized curve \(x= a\cos^3\theta,\ y=a\sin^3\theta\) in fact covers all of \(x^{2/3}+y^{2/3}=a^{2/3}\) as \(\theta\) runs from \(0\) to \(2\pi\text{.}\)

    First, observe that \(x^{2/3}=\big(\root 3\of x\big)^2\ge 0\) and \(y^{2/3}=\big(\root 3\of y\big)^2\ge 0\text{.}\) Hence, if \((x,y)\) obeys \(x^{2/3}+y^{2/3}=a^{2/3}\text{,}\) then necessarily \(0\le x^{2/3}\le a^{2/3} \) and so \(-a\le x\le a\text{.}\) As \(\theta\) runs from \(0\) to \(2\pi\text{,}\) \(a\cos^3\theta\) takes all values between \(-a\) and \(a\) and hence takes all possible values of \(x\text{.}\) For each \(x\in[-a,a]\text{,}\) \(y\) takes two values, namely \(\pm{[a^{2/3}-x^{2/3}]}^{3/2}\text{.}\) If \(x=a\cos^3\theta_0=a\cos^3(2\pi-\theta_0)\text{,}\) the two corresponding values of \(y\) are precisely \(a\sin^3\theta_0\) and \(-a\sin^3\theta_0=a\sin^3(2\pi-\theta_0)\text{.}\)

    1. The name “astroid” comes from the Greek word “aster”, meaning star, with the suffix “oid” meaning “having the shape of”. The curve was first discussed by Johann Bernoulli in 1691–92.

    This page titled 1.11: Optional — The Astroid is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.