8.3: Powers of sine and cosine
( \newcommand{\kernel}{\mathrm{null}\,}\)
Functions consisting of products of the sine and cosine can be integrated by using substitution and trigonometric identities. These can sometimes be tedious, but the technique is straightforward. Some examples will suffice to explain the approach.
Evaluate
∫sin5xdx.
Solution
Rewrite the function:
∫sin5xdx=∫sinxsin4xdx=∫sinx(sin2x)2dx=∫sinx(1−cos2x)2dx.
Now use u=cosx, du=−sinxdx:
∫sinx(1−cos2x)2dx=∫−(1−u2)2du=∫−(1−2u2+u4)du=−u+23u3−15u5+C=−cosx+23cos3x−15cos5x+C.
Evaluate
∫sin6xdx.
Solution
Use sin2x=(1−cos(2x))/2 to rewrite the function:
∫sin6xdx=∫(sin2x)3dx=∫(1−cos2x)38dx=18∫1−3cos2x+3cos22x−cos32xdx.
Now we have four integrals to evaluate:
∫1dx=x
and
∫−3cos2xdx=−32sin2x
are easy. The cos32x integral is like the previous example:
∫−cos32xdx=∫−cos2xcos22xdx=∫−cos2x(1−sin22x)dx=∫−12(1−u2)du=−12(u−u33)=−12(sin2x−sin32x3).
And finally we use another trigonometric identity, cos2x=(1+cos(2x))/2:
∫3cos22xdx=3∫1+cos4x2dx=32(x+sin4x4).
So at long last we get
∫sin6xdx=x8−316sin2x−116(sin2x−sin32x3)+316(x+sin4x4)+C.
Evaluate
∫sin2xcos2xdx.
Solution
Use the formulas sin2x=(1−cos(2x))/2 and cos2x=(1+cos(2x))/2 to get:
∫sin2xcos2xdx=∫1−cos(2x)2⋅1+cos(2x)2dx.
The remainder is left as an exercise.
Contributors
Integrated by Justin Marshall.