11.E: Sequences and Series (Exercises)
- Page ID
- 3455
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)These are homework exercises to accompany David Guichard's "General Calculus" Textmap. Complementary General calculus exercises can be found for other Textmaps and can be accessed here.
11.1: Sequences
Ex 11.1.1 Compute \(\lim_{x\to\infty} x^{1/x}\). (answer)
Ex 11.1.2 Use the squeeze theorem to show that \(\lim_{n\to\infty} {n!\over n^n}=0\).
Ex 11.1.3 Determine whether \(\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^{\infty}\) converges or diverges. If it converges, compute the limit. (answer)
Ex 11.1.4 Determine whether \(\left\{{n^2+1\over (n+1)^2}\right\}_{n=0}^{\infty}\) converges or diverges. If it converges, compute the limit. (answer)
Ex 11.1.5 Determine whether \(\left\{{n+47\over\sqrt{n^2+3n}}\right\}_{n=1}^{\infty}\) converges or diverges. If it converges, compute the limit. (answer)
Ex 11.1.6 Determine whether \(\left\{{2^n\over n!}\right\}_{n=0}^{\infty}\) converges or diverges. (answer)
11.2: Series
Ex 11.2.1 Explain why \(\sum_{n=1}^\infty {n^2\over 2n^2+1}\) diverges. (answer)
Ex 11.2.2 Explain why \(\sum_{n=1}^\infty {5\over 2^{1/n}+14}\) diverges. (answer)
Ex 11.2.3 Explain why \(\sum_{n=1}^\infty {3\over n}\) diverges. (answer)
Ex 11.2.4 Compute \(\sum_{n=0}^\infty {4\over (-3)^n}- {3\over 3^n}\). (answer)
Ex 11.2.5 Compute \(\sum_{n=0}^\infty {3\over 2^n}+ {4\over 5^n}\). (answer)
Ex 11.2.6 Compute \(\sum_{n=0}^\infty {4^{n+1}\over 5^n}\). (answer)
Ex 11.2.7 Compute \(\sum_{n=0}^\infty {3^{n+1}\over 7^{n+1}}\). (answer)
Ex 11.2.8 Compute \(\sum_{n=1}^\infty \left({3\over 5}\right)^n\). (answer)
Ex 11.2.9 Compute \(\sum_{n=1}^\infty {3^n\over 5^{n+1}}\). (answer)
11.3: The Integral Test
Determine whether each series converges or diverges.
Ex 11.3.1 \(\sum_{n=1}^\infty {1\over n^{\pi/4}}\) (answer)
Ex 11.3.2 \(\sum_{n=1}^\infty {n\over n^2+1}\) (answer)
Ex 11.3.3 \(\sum_{n=1}^\infty {\ln n\over n^2}\) (answer)
Ex 11.3.4 \(\sum_{n=1}^\infty {1\over n^2+1}\) (answer)
Ex 11.3.5 \(\sum_{n=1}^\infty {1\over e^n}\) (answer)
Ex 11.3.6 \(\sum_{n=1}^\infty {n\over e^n}\) (answer)
Ex 11.3.7 \(\sum_{n=2}^\infty {1\over n\ln n}\) (answer)
Ex 11.3.8 \(\sum_{n=2}^\infty {1\over n(\ln n)^2}\) (answer)
Ex 11.3.9 Find an \(N\) so that \(\sum_{n=1}^\infty {1\over n^4}\) is between \(\sum_{n=1}^N {1\over n^4}\) and \(\sum_{n=1}^N {1\over n^4} + 0.005\). (answer)
Ex 11.3.10 Find an \(N\) so that \(\sum_{n=0}^\infty {1\over e^n}\) is between \(\sum_{n=0}^N {1\over e^n}\) and \(\sum_{n=0}^N {1\over e^n} + 10^{-4}\). (answer)
Ex 11.3.11 Find an \(N\) so that \(\sum_{n=1}^\infty {\ln n\over n^2}\) is between \(\sum_{n=1}^N {\ln n\over n^2}\) and \(\sum_{n=1}^N {\ln n\over n^2} + 0.005\). (answer)
Ex 11.3.12 Find an \(N\) so that \(\sum_{n=2}^\infty {1\over n(\ln n)^2}\) is between \(\sum_{n=2}^N {1\over n(\ln n)^2}\) and \(\sum_{n=2}^N {1\over n(\ln n)^2} + 0.005\). (answer)
11.4: Alternating Series
Determine whether the following series converge or diverge.
Ex 11.4.1 \(\sum_{n=1}^\infty {(-1)^{n-1}\over 2n+5}\) (answer)
Ex 11.4.2 \(\sum_{n=4}^\infty {(-1)^{n-1}\over \sqrt{n-3}}\) (answer)
Ex 11.4.3 \(\sum_{n=1}^\infty (-1)^{n-1}{n\over 3n-2}\) (answer)
Ex 11.4.4 \(\sum_{n=1}^\infty (-1)^{n-1}{\ln n\over n}\) (answer)
Ex 11.4.5 Approximate \(\sum_{n=1}^\infty (-1)^{n-1}{1\over n^3}\) to two decimal places. (answer)
Ex 11.4.6 Approximate \(\sum_{n=1}^\infty (-1)^{n-1}{1\over n^4}\) to two decimal places. (answer)
11.5: Comparison Test
Determine whether the series converge or diverge.
Ex 11.5.1 \(\sum_{n=1}^\infty {1\over 2n^2+3n+5} \) (answer)
Ex 11.5.2 \(\sum_{n=2}^\infty {1\over 2n^2+3n-5} \) (answer)
Ex 11.5.3 \(\sum_{n=1}^\infty {1\over 2n^2-3n-5} \) (answer)
Ex 11.5.4 \(\sum_{n=1}^\infty {3n+4\over 2n^2+3n+5} \) (answer)
Ex 11.5.5 \(\sum_{n=1}^\infty {3n^2+4\over 2n^2+3n+5} \) (answer)
Ex 11.5.6 \(\sum_{n=1}^\infty {\ln n\over n}\) (answer)
Ex 11.5.7 \(\sum_{n=1}^\infty {\ln n\over n^3}\) (answer)
Ex 11.5.8 \(\sum_{n=2}^\infty {1\over \ln n}\) (answer)
Ex 11.5.9 \(\sum_{n=1}^\infty {3^n\over 2^n+5^n}\) (answer)
Ex 11.5.10 \(\sum_{n=1}^\infty {3^n\over 2^n+3^n}\) (answer)
11.6: Absolute Convergence
Determine whether each series converges absolutely, converges conditionally, or diverges.
Ex 11.6.1 \(\sum_{n=1}^\infty (-1)^{n-1}{1\over 2n^2+3n+5}\) (answer)
Ex 11.6.2 \(\sum_{n=1}^\infty (-1)^{n-1}{3n^2+4\over 2n^2+3n+5}\) (answer)
Ex 11.6.3 \(\sum_{n=1}^\infty (-1)^{n-1}{\ln n\over n}\) (answer)
Ex 11.6.4 \(\sum_{n=1}^\infty (-1)^{n-1} {\ln n\over n^3}\) (answer)
Ex 11.6.5 \(\sum_{n=2}^\infty (-1)^n{1\over \ln n}\) (answer)
Ex 11.6.6 \(\sum_{n=0}^\infty (-1)^{n} {3^n\over 2^n+5^n}\) (answer)
Ex 11.6.7 \(\sum_{n=0}^\infty (-1)^{n} {3^n\over 2^n+3^n}\) (answer)
Ex 11.6.8 \(\sum_{n=1}^\infty (-1)^{n-1} {\arctan n\over n}\) (answer)
11.7: The Ratio and Root Tests
Ex 11.7.1 Compute \(\lim_{n\to\infty} |a_{n+1}/a_n|\) for the series \(\sum 1/n^2\).
Ex 11.7.2 Compute \(\lim_{n\to\infty} |a_{n+1}/a_n|\) for the series \(\sum 1/n\).
Ex 11.7.3 Compute \(\lim_{n\to\infty} |a_n|^{1/n}\) for the series \(\sum 1/n^2\).
Ex 11.7.4 Compute \(\lim_{n\to\infty} |a_n|^{1/n}\) for the series \(\sum 1/n\).
Determine whether the series converge.
Ex 11.7.5 \(\sum_{n=0}^\infty (-1)^{n}{3^n\over 5^n}\) (answer)
Ex 11.7.6 \(\sum_{n=1}^\infty {n!\over n^n}\) (answer)
Ex 11.7.7 \(\sum_{n=1}^\infty {n^5\over n^n}\) (answer)
Ex 11.7.8 \(\sum_{n=1}^\infty {(n!)^2\over n^n}\) (answer)
Ex 11.7.9 Prove theorem 11.7.3, the root test.
11.8: Power Series
Find the radius and interval of convergence for each series. In exercises 3 and 4, do not attempt to determine whether the endpoints are in the interval of convergence.
Ex 11.8.1 \(\sum_{n=0}^\infty n x^n\) (answer)
Ex 11.8.2 \(\sum_{n=0}^\infty {x^n\over n!}\) (answer)
Ex 11.8.3 \(\sum_{n=1}^\infty {n!\over n^n}x^n\) (answer)
Ex 11.8.4 \(\sum_{n=1}^\infty {n!\over n^n}(x-2)^n\) (answer)
Ex 11.8.5 \(\sum_{n=1}^\infty {(n!)^2\over n^n}(x-2)^n\) (answer)
Ex 11.8.6 \(\sum_{n=1}^\infty {(x+5)^n\over n(n+1)}\) (answer)
11.9: Calculus with Power Series
Ex 11.9.1 Find a series representation for \(\ln 2\). (answer)
Ex 11.9.2 Find a power series representation for \(1/(1-x)^2\). (answer)
Ex 11.9.3 Find a power series representation for \( 2/(1-x)^3\). (answer)
Ex 11.9.4 Find a power series representation for \( 1/(1-x)^3\). What is the radius of convergence? (answer)
Ex 11.9.5 Find a power series representation for \(\int\ln(1-x)\,dx\). (answer).
11.10: Taylor Series
For each function, find the Maclaurin series or Taylor series centered at $a$, and the radius of convergence.
Ex 11.10.1 \(\cos x\) (answer)
Ex 11.10.2 \( e^x\) (answer)
Ex 11.10.3 \(1/x\), \(a=5\) (answer)
Ex 11.10.4 \(\ln x\), \(a=1\) (answer)
Ex 11.10.5 \(\ln x\), \(a=2\) (answer)
Ex 11.10.6 \( 1/x^2\), \(a=1\) (answer)
Ex 11.10.7 \(1/\sqrt{1-x}\) (answer)
Ex 11.10.8 Find the first four terms of the Maclaurin series for \(\tan x\) (up to and including the \( x^3\) term). (answer)
Ex 11.10.9 Use a combination of Maclaurin series and algebraic manipulation to find a series centered at zero for \( x\cos (x^2)\). (answer)
Ex 11.10.10 Use a combination of Maclaurin series and algebraic manipulation to find a series centered at zero for \( xe^{-x}\). (answer)
11.11: Taylor's Theorem
Ex 11.11.1 Find a polynomial approximation for \(\cos x\) on \([0,\pi]\), accurate to \( \pm 10^{-3}\) (answer)
Ex 11.11.2 How many terms of the series for \(\ln x\) centered at 1 are required so that the guaranteed error on \([1/2,3/2]\) is at most \( 10^{-3}\)? What if the interval is instead \([1,3/2]\)? (answer)
Ex 11.11.3 Find the first three nonzero terms in the Taylor series for \(\tan x\) on \([-\pi/4,\pi/4]\), and compute the guaranteed error term as given by Taylor's theorem. (You may want to use Sage or a similar aid.) (answer)
Ex 11.11.4 Show that \(\cos x\) is equal to its Taylor series for all \(x\) by showing that the limit of the error term is zero as N approaches infinity.
Ex 11.11.5 Show that \(e^x\) is equal to its Taylor series for all \(x\) by showing that the limit of the error term is zero as \(N\) approaches infinity.