Processing math: 88%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.2: Trigonometric Integrals

  • Gilbert Strang & Edwin “Jed” Herman
  • OpenStax

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives
  • Solve integration problems involving products and powers of sinx and cosx.
  • Solve integration problems involving products and powers of tanx and secx.
  • Use reduction formulas to solve trigonometric integrals.

In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is featured in Trigonometric Substitution. This technique allows us to convert algebraic expressions that we may not be able to integrate into expressions involving trigonometric functions, which we may be able to integrate using the techniques described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and spherical coordinate systems later. Let’s begin our study with products of sinx and cosx.

Integrating Products and Powers of sin x and cos x

A key idea behind the strategy used to integrate combinations of products and powers of sinx and cosx involves rewriting these expressions as sums and differences of integrals of the form sinjxcosxdx or cosjxsinxdx. After rewriting these integrals, we evaluate them using u-substitution. Before describing the general process in detail, let’s take a look at the following examples.

Example 7.2.1: Integrating cosjxsinxdx

Evaluate cos3xsinxdx.

Solution

Use u-substitution and let u=cosx. In this case, du=sinxdx.

Thus,

cos3xsinxdx=u3du=14u4+C=14cos4x+C.

Exercise 7.2.1

Evaluate sin4xcosxdx.

Hint

Let u=sinx.

Answer

sin4xcosxdx=15sin5x+C

Example 7.2.2: A Preliminary Example: Integrating cosjxsinkxdx where k is Odd

Evaluate cos2xsin3xdx.

Solution

To convert this integral to integrals of the form cosjxsinxdx, rewrite sin3x=sin2xsinx and make the substitution sin2x=1cos2x.

Thus,

cos2xsin3xdx=cos2x(1cos2x)sinxdxLet u=cosx;then du=sinxdx.=u2(1u2)du=(u4u2)du=15u513u3+C=15cos5x13cos3x+C.

Exercise 7.2.2

Evaluate cos3xsin2xdx.

Hint

Write cos3x=cos2xcosx=(1sin2x)cosx and let u=sinx.

Answer

cos3xsin2xdx=13sin3x15sin5x+C

In the next example, we see the strategy that must be applied when there are only even powers of sinx and cosx. For integrals of this type, the identities

sin2x=1212cos(2x)=1cos(2x)2

and

cos2x=12+12cos(2x)=1+cos(2x)2

are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the double-angle identity cos(2x)=cos2xsin2x and the Pythagorean identity cos2x+sin2x=1.

Example 7.2.3: Integrating an Even Power of sinx

Evaluate sin2xdx.

Solution

To evaluate this integral, let’s use the trigonometric identity sin2x=1212cos(2x). Thus,

sin2xdx=(1212cos(2x))dx=12x14sin(2x)+C.

Exercise 7.2.3

Evaluate cos2xdx.

Hint

cos2x=12+12cos(2x)

Answer

cos2xdx=12x+14sin(2x)+C

The general process for integrating products of powers of sinx and cosx is summarized in the following set of guidelines.

Problem-Solving Strategy: Integrating Products and Powers of sinx and cosx

To integrate cosjxsinkxdx use the following strategies:

1. If k is odd, rewrite sinkx=sink1xsinx and use the identity sin2x=1cos2x to rewrite sink1x in terms of cosx. Integrate using the substitution u=cosx. This substitution makes du=sinxdx.

2. If j is odd, rewrite cosjx=cosj1xcosx and use the identity cos2x=1sin2x to rewrite cosj1x in terms of sinx. Integrate using the substitution u=sinx. This substitution makes du=cosxdx. (Note: If both j and k are odd, either strategy 1 or strategy 2 may be used.)

3. If both j and k are even, use sin2x=1cos(2x)2 and cos2x=1+cos(2x)2. After applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.

Example 7.2.4: Integrating cosjxsinkxdx where k is Odd

Evaluate cos8xsin5xdx.

Solution

Since the power on sinx is odd, use strategy 1. Thus,

cos8xsin5xdx=cos8xsin4xsinxdxBreak off sinx.=cos8x(sin2x)2sinxdxRewrite sin4x=(sin2x)2.=cos8x(1cos2x)2sinxdxSubstitute sin2x=1cos2x.=u8(1u2)2(du)Let u=cosx and du=sinxdx.=(u8+2u10u12)duExpand.=19u9+211u11113u13+CEvaluate the integral.=19cos9x+211cos11x113cos13x+CSubstitute u=cosx.

Example 7.2.5: Integrating cosjxsinkxdx where k and j are Even

Evaluate sin4xdx.

Solution: Since the power on sinx is even (k=4) and the power on cosx is even (j=0), we must use strategy 3. Thus,

sin4xdx=(sin2x)2dxRewrite sin4x=(sin2x)2.=(1212cos(2x))2dxSubstitute sin2x=1212cos(2x).=(1412cos(2x)+14cos2(2x))dxExpand (1212cos(2x))2.=(1412cos(2x)+14(12+12cos(4x)))dxUse Power Reduction Formula on cos2(2x).=(3812cos(2x)+18cos(4x))dxSimplify.=38x14sin(2x)+132sin(4x)+CEvaluate the integral.

Exercise 7.2.4

Evaluate cos3xdx.

Hint

Use strategy 2. Write cos3x=cos2xcosx and substitute cos2x=1sin2x.

Answer

cos3xdx=sinx13sin3x+C

Exercise 7.2.5

Evaluate cos2(3x)dx.

Hint

Use strategy 3. Substitute cos2(3x)=12+12cos(6x)

Answer

cos2(3x)dx=12x+112sin(6x)+C

Product to Sum Formulas

In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often necessary to integrate products that include sin(ax),sin(bx),cos(ax), and cos(bx). These integrals are evaluated by applying trigonometric identities, as outlined in the following rule.

Rule: Integrating Products of Sines and Cosines of Different Angles

To integrate products involving sin(ax),sin(bx),cos(ax), and cos(bx), use the substitutions

sin(ax)sin(bx)=12cos((ab)x)12cos((a+b)x)

sin(ax)cos(bx)=12sin((ab)x)+12sin((a+b)x)

cos(ax)cos(bx)=12cos((ab)x)+12cos((a+b)x)

These formulas may be derived from the sum-of-angle formulas for sine and cosine.

Example 7.2.6: Evaluating sin(ax)cos(bx)dx

Evaluate sin(5x)cos(3x)dx.

Solution: Apply the identity sin(5x)cos(3x)=12sin(2x)+12sin(8x). Thus,

sin(5x)cos(3x)dx=12sin(2x)+12sin(8x)dx=14cos(2x)116cos(8x)+C.

Exercise 7.2.6

Evaluate cos(6x)cos(5x)dx.

Hint

Substitute cos(6x)cos(5x)=12cosx+12cos(11x).

Answer

cos(6x)cos(5x)dx=12sinx+122sin(11x)+C

Integrating Products and Powers of tan x and sec x

Before discussing the integration of products and powers of tanx and secx, it is useful to recall the integrals involving tanx and secx we have already learned:

1. sec2xdx=tanx+C

2. secxtanxdx=secx+C

3. tanxdx=ln|secx|+C

4. secxdx=ln|secx+tanx|+C.

For most integrals of products and powers of tanx and secx, we rewrite the expression we wish to integrate as the sum or difference of integrals of the form tanjxsec2xdx or secjxtanxdx. As we see in the following example, we can evaluate these new integrals by using u-substitution.

Example 7.2.7: Evaluating secjxtanxdx

Evaluate sec5xtanxdx.

Solution: Start by rewriting sec5xtanx as sec4xsecxtanx.

sec5xtanxdx=sec4xsecxtanxdx=u4duLet u=secx;then,du=secxtanxdx.=15u5+CEvaluate the integral.=15sec5x+CSubstitute secx=u.

You can read some interesting information at this website to learn about a common integral involving the secant.

Exercise 7.2.7

Evaluate tan5xsec2xdx.

Hint

Let u=tanx and du=sec2x.

Answer

tan5xsec2xdx=16tan6x+C

We now take a look at the various strategies for integrating products and powers of secx and tanx.

Problem-Solving Strategy: Integrating tankxsecjxdx

To integrate tankxsecjxdx, use the following strategies:

1. If j is even and j2, rewrite secjx=secj2xsec2x and use sec2x=tan2x+1 to rewrite secj2x in terms of tanx. Let u=tanx and du=sec2x.

2. If k is odd and j1, rewrite tankxsecjx=tank1xsecj1xsecxtanx and use tan2x=sec2x1 to rewrite tank1x in terms of secx. Let u=secx and du=secxtanxdx. (Note: If j is even and k is odd, then either strategy 1 or strategy 2 may be used.)

3. If k is odd where k3 and j=0, rewrite tankx=tank2xtan2x=tank2x(sec2x1)=tank2xsec2xtank2x. It may be necessary to repeat this process on the tank2x term.

4. If k is even and j is odd, then use tan2x=sec2x1 to express tankx in terms of secx. Use integration by parts to integrate odd powers of secx.

Example 7.2.8: Integrating tankxsecjxdx when j is Even

Evaluate tan6xsec4xdx.

Solution

Since the power on secx is even, rewrite sec4x=sec2xsec2x and use sec2x=tan2x+1 to rewrite the first sec2x in terms of tanx. Thus,

tan6xsec4xdx=tan6x(tan2x+1)sec2xdx=u6(u2+1)duLet u=tanx and du=sec2x.=(u8+u6)duExpand.=19u9+17u7+CEvaluate the integral.=19tan9x+17tan7x+C.Substitute tanx=u.

Example 7.2.9: Integrating tankxsecjxdx when k is Odd

Evaluate tan5xsec3xdx.

Solution

Since the power on tanx is odd, begin by rewriting tan5xsec3x=tan4xsec2xsecxtanx. Thus,

tan5xsec3xdx=tan4xsec2xsecxtanxdx.=(tan2x)2sec2xsecxtanxdxWrite tan4x=(tan2x)2.=(sec2x1)2sec2xsecxtanxdxUse tan2x=sec2x1.=(u21)2u2duLet u=secx and du=secxtanxdx=(u62u4+u2)duExpand.=17u725u5+13u3+CIntegrate.=17sec7x25sec5x+13sec3x+CSubstitute secx=u.

Example 7.2.10: Integrating tankxdx where k is Odd and k3

Evaluate tan3xdx.

Solution

Begin by rewriting tan3x=tanxtan2x=tanx(sec2x1)=tanxsec2xtanx. Thus,

tan3xdx=(tanxsec2xtanx)dx=tanxsec2xdxtanxdx=12tan2xln|secx|+C.

For the first integral, use the substitution u=tanx. For the second integral, use the formula.

Example 7.2.11: Integrating sec3xdx

Integrate sec3xdx.

Solution

This integral requires integration by parts. To begin, let u=secx and dv=sec2x. These choices make du=secxtanx and v=tanx. Thus,

sec3xdx=secxtanxtanxsecxtanxdx=secxtanxtan2xsecxdxSimplify.=secxtanx(sec2x1)secxdxSubstitute tan2x=sec2x1.=secxtanx+secxdxsec3xdxRewrite.=secxtanx+ln|secx+tanx|sec3xdx.Evaluate secxdx.

We now have

sec3xdx=secxtanx+ln|secx+tanx|sec3xdx.

Since the integral \displaystyle ∫\sec^3x\,dx has reappeared on the right-hand side, we can solve for \displaystyle ∫\sec^3x\,dx by adding it to both sides. In doing so, we obtain

2∫\sec^3x\,dx=\sec x\tan x+\ln|\sec x+\tan x|.\nonumber

Dividing by 2, we arrive at

∫\sec^3x\,dx=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C\nonumber

Exercise \PageIndex{8}

Evaluate \displaystyle ∫\tan^3x\sec^7x\,dx.

Hint

Use Example \PageIndex{9} as a guide.

Answer

\displaystyle ∫\tan^3x\sec^7x\,dx = \frac{1}{9}\sec^9x−\frac{1}{7}\sec^7x+C

Reduction Formulas

Evaluating \displaystyle ∫\sec^nx\,dx for values of n where n is odd requires integration by parts. In addition, we must also know the value of \displaystyle ∫\sec^{n−2}x\,dx to evaluate \displaystyle ∫\sec^nx\,dx. The evaluation of \displaystyle ∫\tan^nx\,dx also requires being able to integrate \displaystyle ∫\tan^{n−2}x\,dx. To make the process easier, we can derive and apply the following power reduction formulas. These rules allow us to replace the integral of a power of \sec x or \tan x with the integral of a lower power of \sec x or \tan x.

Rule: Reduction Formulas for ∫\sec^nx\,dx and ∫\tan^nx\,dx

∫\sec^n x\,dx=\frac{1}{n−1}\sec^{n−2}x\tan x+\frac{n−2}{n−1}∫\sec^{n−2}x\,dx \nonumber

∫\tan^n x\,dx=\frac{1}{n−1}\tan^{n−1}x−∫\tan^{n−2}x\,dx \nonumber

The first power reduction rule may be verified by applying integration by parts. The second may be verified by following the strategy outlined for integrating odd powers of \tan x.

Example \PageIndex{12}: Revisiting ∫\sec^3x\,dx

Apply a reduction formula to evaluate \displaystyle ∫\sec^3x\,dx.

Solution: By applying the first reduction formula, we obtain

\begin{align*} \displaystyle ∫\sec^3x\,dx &=\frac{1}{2}\sec x\tan x+\frac{1}{2}∫\sec x\,dx\\[4pt] &=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C.\end{align*}

Example \PageIndex{13}: Using a Reduction Formula

Evaluate \displaystyle ∫\tan^4x\,dx.

Solution: Applying the reduction formula for ∫\tan^4x\,dx we have

\begin{align*} \displaystyle ∫\tan^4x\,dx &=\frac{1}{3}\tan^3x−∫\tan^2x\,dx\\[4pt] &=\frac{1}{3}\tan^3x−(\tan x−∫\tan^0x\,dx) & & \text{Apply the reduction formula to }∫\tan^2x\,dx.\\[4pt] &=\frac{1}{3}\tan^3x−\tan x+∫1\,dx & & \text{Simplify.}\\[4pt] &=\frac{1}{3}\tan^3x−\tan x+x+C & & \text{Evaluate }∫1\,dx\end{align*}

Exercise \PageIndex{9}

Apply the reduction formula to \displaystyle ∫\sec^5x\,dx.

Hint

Use reduction formula 1 and let n=5.

Answer

\displaystyle ∫\sec^5x\,dx=\frac{1}{4}\sec^3x\tan x+\frac{3}{4}∫\sec^3x

Key Concepts

Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include

  1. Applying trigonometric identities to rewrite the integral so that it may be evaluated by u-substitution
  2. Using integration by parts
  3. Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the sum of individual sine and cosine functions
  4. Applying reduction formulas

Key Equations

To integrate products involving \sin(ax), \,\sin(bx), \,\cos(ax), and \cos(bx), use the substitutions.

  • Sine Products

\sin(ax)\sin(bx)=\frac{1}{2}\cos((a−b)x)−\frac{1}{2}\cos((a+b)x)

  • Sine and Cosine Products

\sin(ax)\cos(bx)=\frac{1}{2}\sin((a−b)x)+\frac{1}{2}\sin((a+b)x)

  • Cosine Products

\cos(ax)\cos(bx)=\frac{1}{2}\cos((a−b)x)+\frac{1}{2}\cos((a+b)x)

  • Power Reduction Formula

\displaystyle ∫\sec^nx\,dx=\frac{1}{n−1}\sec^{n−2}x \tan x+\frac{n−2}{n−1}∫\sec^{n−2}x\,dx

  • Power Reduction Formula

\displaystyle ∫\tan^nx\,dx=\frac{1}{n−1}\tan^{n−1}x−∫\tan^{n−2}x\,dx

Glossary

power reduction formula
a rule that allows an integral of a power of a trigonometric function to be exchanged for an integral involving a lower power
trigonometric integral
an integral involving powers and products of trigonometric functions

This page titled 7.2: Trigonometric Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?