7.2: Trigonometric Integrals
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Solve integration problems involving products and powers of sinx and cosx.
- Solve integration problems involving products and powers of tanx and secx.
- Use reduction formulas to solve trigonometric integrals.
In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is featured in Trigonometric Substitution. This technique allows us to convert algebraic expressions that we may not be able to integrate into expressions involving trigonometric functions, which we may be able to integrate using the techniques described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and spherical coordinate systems later. Let’s begin our study with products of sinx and cosx.
Integrating Products and Powers of sin x and cos x
A key idea behind the strategy used to integrate combinations of products and powers of sinx and cosx involves rewriting these expressions as sums and differences of integrals of the form ∫sinjxcosxdx or ∫cosjxsinxdx. After rewriting these integrals, we evaluate them using u-substitution. Before describing the general process in detail, let’s take a look at the following examples.
Evaluate ∫cos3xsinxdx.
Solution
Use u-substitution and let u=cosx. In this case, du=−sinxdx.
Thus,
∫cos3xsinxdx=−∫u3du=−14u4+C=−14cos4x+C.
Evaluate ∫sin4xcosxdx.
- Hint
-
Let u=sinx.
- Answer
-
∫sin4xcosxdx=15sin5x+C
Evaluate ∫cos2xsin3xdx.
Solution
To convert this integral to integrals of the form ∫cosjxsinxdx, rewrite sin3x=sin2xsinx and make the substitution sin2x=1−cos2x.
Thus,
∫cos2xsin3xdx=∫cos2x(1−cos2x)sinxdxLet u=cosx;then du=−sinxdx.=−∫u2(1−u2)du=∫(u4−u2)du=15u5−13u3+C=15cos5x−13cos3x+C.
Evaluate ∫cos3xsin2xdx.
- Hint
-
Write cos3x=cos2xcosx=(1−sin2x)cosx and let u=sinx.
- Answer
-
∫cos3xsin2xdx=13sin3x−15sin5x+C
In the next example, we see the strategy that must be applied when there are only even powers of sinx and cosx. For integrals of this type, the identities
sin2x=12−12cos(2x)=1−cos(2x)2
and
cos2x=12+12cos(2x)=1+cos(2x)2
are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the double-angle identity cos(2x)=cos2x−sin2x and the Pythagorean identity cos2x+sin2x=1.
Evaluate ∫sin2xdx.
Solution
To evaluate this integral, let’s use the trigonometric identity sin2x=12−12cos(2x). Thus,
∫sin2xdx=∫(12−12cos(2x))dx=12x−14sin(2x)+C.
Evaluate ∫cos2xdx.
- Hint
-
cos2x=12+12cos(2x)
- Answer
-
∫cos2xdx=12x+14sin(2x)+C
The general process for integrating products of powers of sinx and cosx is summarized in the following set of guidelines.
To integrate ∫cosjxsinkxdx use the following strategies:
1. If k is odd, rewrite sinkx=sink−1xsinx and use the identity sin2x=1−cos2x to rewrite sink−1x in terms of cosx. Integrate using the substitution u=cosx. This substitution makes du=−sinxdx.
2. If j is odd, rewrite cosjx=cosj−1xcosx and use the identity cos2x=1−sin2x to rewrite cosj−1x in terms of sinx. Integrate using the substitution u=sinx. This substitution makes du=cosxdx. (Note: If both j and k are odd, either strategy 1 or strategy 2 may be used.)
3. If both j and k are even, use sin2x=1−cos(2x)2 and cos2x=1+cos(2x)2. After applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.
Evaluate ∫cos8xsin5xdx.
Solution
Since the power on sinx is odd, use strategy 1. Thus,
∫cos8xsin5xdx=∫cos8xsin4xsinxdxBreak off sinx.=∫cos8x(sin2x)2sinxdxRewrite sin4x=(sin2x)2.=∫cos8x(1−cos2x)2sinxdxSubstitute sin2x=1−cos2x.=∫u8(1−u2)2(−du)Let u=cosx and du=−sinxdx.=∫(−u8+2u10−u12)duExpand.=−19u9+211u11−113u13+CEvaluate the integral.=−19cos9x+211cos11x−113cos13x+CSubstitute u=cosx.
Evaluate ∫sin4xdx.
Solution: Since the power on sinx is even (k=4) and the power on cosx is even (j=0), we must use strategy 3. Thus,
∫sin4xdx=∫(sin2x)2dxRewrite sin4x=(sin2x)2.=∫(12−12cos(2x))2dxSubstitute sin2x=12−12cos(2x).=∫(14−12cos(2x)+14cos2(2x))dxExpand (12−12cos(2x))2.=∫(14−12cos(2x)+14(12+12cos(4x)))dxUse Power Reduction Formula on cos2(2x).=∫(38−12cos(2x)+18cos(4x))dxSimplify.=38x−14sin(2x)+132sin(4x)+CEvaluate the integral.
Evaluate ∫cos3xdx.
- Hint
-
Use strategy 2. Write cos3x=cos2xcosx and substitute cos2x=1−sin2x.
- Answer
-
∫cos3xdx=sinx−13sin3x+C
Evaluate ∫cos2(3x)dx.
- Hint
-
Use strategy 3. Substitute cos2(3x)=12+12cos(6x)
- Answer
-
∫cos2(3x)dx=12x+112sin(6x)+C
Product to Sum Formulas
In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often necessary to integrate products that include sin(ax),sin(bx),cos(ax), and cos(bx). These integrals are evaluated by applying trigonometric identities, as outlined in the following rule.
To integrate products involving sin(ax),sin(bx),cos(ax), and cos(bx), use the substitutions
sin(ax)sin(bx)=12cos((a−b)x)−12cos((a+b)x)
sin(ax)cos(bx)=12sin((a−b)x)+12sin((a+b)x)
cos(ax)cos(bx)=12cos((a−b)x)+12cos((a+b)x)
These formulas may be derived from the sum-of-angle formulas for sine and cosine.
Evaluate ∫sin(5x)cos(3x)dx.
Solution: Apply the identity sin(5x)cos(3x)=12sin(2x)+12sin(8x). Thus,
∫sin(5x)cos(3x)dx=∫12sin(2x)+12sin(8x)dx=−14cos(2x)−116cos(8x)+C.
Evaluate ∫cos(6x)cos(5x)dx.
- Hint
-
Substitute cos(6x)cos(5x)=12cosx+12cos(11x).
- Answer
-
∫cos(6x)cos(5x)dx=12sinx+122sin(11x)+C
Integrating Products and Powers of tan x and sec x
Before discussing the integration of products and powers of tanx and secx, it is useful to recall the integrals involving tanx and secx we have already learned:
1. ∫sec2xdx=tanx+C
2. ∫secxtanxdx=secx+C
3. ∫tanxdx=ln|secx|+C
4. ∫secxdx=ln|secx+tanx|+C.
For most integrals of products and powers of tanx and secx, we rewrite the expression we wish to integrate as the sum or difference of integrals of the form ∫tanjxsec2xdx or ∫secjxtanxdx. As we see in the following example, we can evaluate these new integrals by using u-substitution.
Evaluate ∫sec5xtanxdx.
Solution: Start by rewriting sec5xtanx as sec4xsecxtanx.
∫sec5xtanxdx=∫sec4xsecxtanxdx=∫u4duLet u=secx;then,du=secxtanxdx.=15u5+CEvaluate the integral.=15sec5x+CSubstitute secx=u.
You can read some interesting information at this website to learn about a common integral involving the secant.
Evaluate ∫tan5xsec2xdx.
- Hint
-
Let u=tanx and du=sec2x.
- Answer
-
∫tan5xsec2xdx=16tan6x+C
We now take a look at the various strategies for integrating products and powers of secx and tanx.
To integrate ∫tankxsecjxdx, use the following strategies:
1. If j is even and j≥2, rewrite secjx=secj−2xsec2x and use sec2x=tan2x+1 to rewrite secj−2x in terms of tanx. Let u=tanx and du=sec2x.
2. If k is odd and j≥1, rewrite tankxsecjx=tank−1xsecj−1xsecxtanx and use tan2x=sec2x−1 to rewrite tank−1x in terms of secx. Let u=secx and du=secxtanxdx. (Note: If j is even and k is odd, then either strategy 1 or strategy 2 may be used.)
3. If k is odd where k≥3 and j=0, rewrite tankx=tank−2xtan2x=tank−2x(sec2x−1)=tank−2xsec2x−tank−2x. It may be necessary to repeat this process on the tank−2x term.
4. If k is even and j is odd, then use tan2x=sec2x−1 to express tankx in terms of secx. Use integration by parts to integrate odd powers of secx.
Evaluate ∫tan6xsec4xdx.
Solution
Since the power on secx is even, rewrite sec4x=sec2xsec2x and use sec2x=tan2x+1 to rewrite the first sec2x in terms of tanx. Thus,
∫tan6xsec4xdx=∫tan6x(tan2x+1)sec2xdx=∫u6(u2+1)duLet u=tanx and du=sec2x.=∫(u8+u6)duExpand.=19u9+17u7+CEvaluate the integral.=19tan9x+17tan7x+C.Substitute tanx=u.
Evaluate ∫tan5xsec3xdx.
Solution
Since the power on tanx is odd, begin by rewriting tan5xsec3x=tan4xsec2xsecxtanx. Thus,
∫tan5xsec3xdx=∫tan4xsec2xsecxtanxdx.=∫(tan2x)2sec2xsecxtanxdxWrite tan4x=(tan2x)2.=∫(sec2x−1)2sec2xsecxtanxdxUse tan2x=sec2x−1.=∫(u2−1)2u2duLet u=secx and du=secxtanxdx=∫(u6−2u4+u2)duExpand.=17u7−25u5+13u3+CIntegrate.=17sec7x−25sec5x+13sec3x+CSubstitute secx=u.
Evaluate ∫tan3xdx.
Solution
Begin by rewriting tan3x=tanxtan2x=tanx(sec2x−1)=tanxsec2x−tanx. Thus,
∫tan3xdx=∫(tanxsec2x−tanx)dx=∫tanxsec2xdx−∫tanxdx=12tan2x−ln|secx|+C.
For the first integral, use the substitution u=tanx. For the second integral, use the formula.
Integrate ∫sec3xdx.
Solution
This integral requires integration by parts. To begin, let u=secx and dv=sec2x. These choices make du=secxtanx and v=tanx. Thus,
∫sec3xdx=secxtanx−∫tanxsecxtanxdx=secxtanx−∫tan2xsecxdxSimplify.=secxtanx−∫(sec2x−1)secxdxSubstitute tan2x=sec2x−1.=secxtanx+∫secxdx−∫sec3xdxRewrite.=secxtanx+ln|secx+tanx|−∫sec3xdx.Evaluate ∫secxdx.
We now have
∫sec3xdx=secxtanx+ln|secx+tanx|−∫sec3xdx.
Since the integral \displaystyle ∫\sec^3x\,dx has reappeared on the right-hand side, we can solve for \displaystyle ∫\sec^3x\,dx by adding it to both sides. In doing so, we obtain
2∫\sec^3x\,dx=\sec x\tan x+\ln|\sec x+\tan x|.\nonumber
Dividing by 2, we arrive at
∫\sec^3x\,dx=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C\nonumber
Evaluate \displaystyle ∫\tan^3x\sec^7x\,dx.
- Hint
-
Use Example \PageIndex{9} as a guide.
- Answer
-
\displaystyle ∫\tan^3x\sec^7x\,dx = \frac{1}{9}\sec^9x−\frac{1}{7}\sec^7x+C
Reduction Formulas
Evaluating \displaystyle ∫\sec^nx\,dx for values of n where n is odd requires integration by parts. In addition, we must also know the value of \displaystyle ∫\sec^{n−2}x\,dx to evaluate \displaystyle ∫\sec^nx\,dx. The evaluation of \displaystyle ∫\tan^nx\,dx also requires being able to integrate \displaystyle ∫\tan^{n−2}x\,dx. To make the process easier, we can derive and apply the following power reduction formulas. These rules allow us to replace the integral of a power of \sec x or \tan x with the integral of a lower power of \sec x or \tan x.
∫\sec^n x\,dx=\frac{1}{n−1}\sec^{n−2}x\tan x+\frac{n−2}{n−1}∫\sec^{n−2}x\,dx \nonumber
∫\tan^n x\,dx=\frac{1}{n−1}\tan^{n−1}x−∫\tan^{n−2}x\,dx \nonumber
The first power reduction rule may be verified by applying integration by parts. The second may be verified by following the strategy outlined for integrating odd powers of \tan x.
Apply a reduction formula to evaluate \displaystyle ∫\sec^3x\,dx.
Solution: By applying the first reduction formula, we obtain
\begin{align*} \displaystyle ∫\sec^3x\,dx &=\frac{1}{2}\sec x\tan x+\frac{1}{2}∫\sec x\,dx\\[4pt] &=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C.\end{align*}
Evaluate \displaystyle ∫\tan^4x\,dx.
Solution: Applying the reduction formula for ∫\tan^4x\,dx we have
\begin{align*} \displaystyle ∫\tan^4x\,dx &=\frac{1}{3}\tan^3x−∫\tan^2x\,dx\\[4pt] &=\frac{1}{3}\tan^3x−(\tan x−∫\tan^0x\,dx) & & \text{Apply the reduction formula to }∫\tan^2x\,dx.\\[4pt] &=\frac{1}{3}\tan^3x−\tan x+∫1\,dx & & \text{Simplify.}\\[4pt] &=\frac{1}{3}\tan^3x−\tan x+x+C & & \text{Evaluate }∫1\,dx\end{align*}
Apply the reduction formula to \displaystyle ∫\sec^5x\,dx.
- Hint
-
Use reduction formula 1 and let n=5.
- Answer
-
\displaystyle ∫\sec^5x\,dx=\frac{1}{4}\sec^3x\tan x+\frac{3}{4}∫\sec^3x
Key Concepts
Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include
- Applying trigonometric identities to rewrite the integral so that it may be evaluated by u-substitution
- Using integration by parts
- Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the sum of individual sine and cosine functions
- Applying reduction formulas
Key Equations
To integrate products involving \sin(ax), \,\sin(bx), \,\cos(ax), and \cos(bx), use the substitutions.
- Sine Products
\sin(ax)\sin(bx)=\frac{1}{2}\cos((a−b)x)−\frac{1}{2}\cos((a+b)x)
- Sine and Cosine Products
\sin(ax)\cos(bx)=\frac{1}{2}\sin((a−b)x)+\frac{1}{2}\sin((a+b)x)
- Cosine Products
\cos(ax)\cos(bx)=\frac{1}{2}\cos((a−b)x)+\frac{1}{2}\cos((a+b)x)
- Power Reduction Formula
\displaystyle ∫\sec^nx\,dx=\frac{1}{n−1}\sec^{n−2}x \tan x+\frac{n−2}{n−1}∫\sec^{n−2}x\,dx
- Power Reduction Formula
\displaystyle ∫\tan^nx\,dx=\frac{1}{n−1}\tan^{n−1}x−∫\tan^{n−2}x\,dx
Glossary
- power reduction formula
- a rule that allows an integral of a power of a trigonometric function to be exchanged for an integral involving a lower power
- trigonometric integral
- an integral involving powers and products of trigonometric functions