Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.5: Miscellaneous Integration Methods

( \newcommand{\kernel}{\mathrm{null}\,}\)

The integration methods presented so far are considered “standard,” meaning every calculus student should know them. This section will discuss a few additional methods, some more common than others. One such method is the Leibniz integral rule for “differentiation under the integral sign.”5 This powerful and useful method is best explained with a simple example.

d\dalphaeαx\dx = d\dalpha(eαx) \dx = xeαx\dx

However, differentiating the right side of the formula ([eqn:diffinteax]) shows that

d\dalphaeαx\dx = d\dalpha(1αeαx + C) = α(xeαx)  1eαxα2 = 1αxeαx  1α2eαx

Thus,

xeαx\dx = 1αxeαx  1α2eαx + C

which can be verified via integration by parts with the tabular method:

xeαx\dx = 1αxeαx  1α2eαx + C

What was actually done in the above example? A known integral,

eαx\dx = 1αeαx + C ,

was differentiated with respect to α via the Leibniz rule to produce a new integral,

xeαx\dx = 1αxeαx  1α2eαx + C ,

with the constant α treated temporarily—only during the differentiation—as a variable. In general, that is how the Leibniz rule is used. Typically this means if you want to evaluate a certain integral with the Leibniz rule, then you “work backwards” to figure out which integral you need to differentiate with respect to some constant (e.g. α) in the integrand.

Example 6.5.1: intleibniz1

Add text here.

Solution

Use the Leibniz rule to evaluate  \dx(1+x2)2 .

Solution: By formula ([eqn:atanint]) in Section 5.4,

\dxa2+x2 = 1atan1(xa) + C

for any constant a>0. So differentiate both sides with respect to a:

\[\begin{aligned} \frac{d}{\da}\,\int\,\frac{\dx}{a^2 + x^2} ~&=~ \frac{d}{\da}\,\left(\tfrac{1}{a}\,\tan^{-1}\left(\tfrac{x}{a}\right) ~+~ C\right)\

\[6pt] \int\,\frac{d}{\da}\,\left(\frac{1}{a^2 + x^2}\right)~\dx ~&=~ -\tfrac{1}{a^2}\,\tan^{-1}\left(\tfrac{x}{a}\right) ~+~ \tfrac{1}{a}\,\cdot\,\frac{1}{1 + \left(\tfrac{x}{a}\right)^2}\,\cdot\,-\tfrac{x}{a^2}\

\[6pt] \int -\frac{2a}{(a^2 + x^2)^2}\,\dx ~&=~ -\tfrac{1}{a^2}\,\tan^{-1}\left(\tfrac{x}{a}\right) ~-~ \frac{x}{a\,(a^2 + x^2)}\

\boldsymbol{6pt] \int \frac{\dx}{(a^2 + x^2)^2} ~&=~ \tfrac{1}{2a^3}\,\tan^{-1}\left(\tfrac{x}{a}\right) ~+~ \frac{x}{2a^2\,(a^2 + x^2)} ~+~ C\end{aligned} \nonumber}

That general formula is useful in itself. In particular, for a=1,

\dx(1+x2)2 = 12tan1x + x2(1+x2) + C ,

which agrees with the result from Example

Example 6.5.1: trigsub2

Add text here.

Solution

in Section 6.3.
Notice that there was no generic constant (e.g. a or α) in the statement of the problem. When that happens, you will need to figure out where the constant should be in order to use the Leibniz rule.

You can also use differentiation under the integral sign to evaluate definite integrals.

Example 6.5.1: intexpx2

Add text here.

Solution

Show that  0ex2\dx = 12π .

Solution: Let I=0ex2\dx. The integral is convergent, since by Exercise [exer:exple1px] in Section 4.4, for all x

ex2  1 + x20  ex2  11+x2

implies I is convergent by the Comparison Test, since 011+x2\dx is convergent (and equals 12π) by Example

Example 6.5.1: improper5

Add text here.

Solution

in Section 5.5. For α0, define

ϕ(α) = 0αeα2x21+x2\dx .

Then clearly ϕ(0)=0, and differentiating under the integral sign shows

ϕ(α) = 02α2eα2x2+eα2x21+x2 \dxϕ(0) = 0\dx1+x2 = 12π .

The substitution y=αx, so that \dy=α\dx, shows ϕ(α) can be written as

ϕ(α) = 0ey21+(yα)2\dy0  lim

Also, for \alpha > 0,

\[\begin{aligned} \frac{d}{\dalpha}\,\left(\frac{1}{\alpha}\,e^{-\alpha^2}\,\phi(\alpha)\right) ~&=~ \frac{d}{\dalpha}\,\int_0^{\infty} \,\frac{e^{-\alpha^2 (1+x^2)}}{1 + x^2} \,\dx ~=~ \int_0^{\infty} \,\frac{-2\alpha\,(1+x^2)\, e^{-\alpha^2 (1+x^2)}}{1 + x^2}~\dx\

\[6pt] &=~ -2\alpha\, e^{-\alpha^2}\,\int_0^{\infty} e^{-\alpha^2 x^2}~\dx \quad\text{, now substitute $u = \alpha x$ and $\du = \alpha \dx$ to get}\

\[6pt] &=~ -2\alpha\, e^{-\alpha^2}\,\frac{1}{\alpha}\,\int_0^{\infty} e^{-u^2} \,\du ~=~ -2\, e^{-\alpha^2}\,I \quad\text{, and so integrating both sides yields}\

6pt] \int_0^{\infty} \frac{d}{\dalpha}\,\left(\frac{1}{\alpha}\,e^{-\alpha^2}\,\phi(\alpha)\right)~\dalpha ~&=~ -2I\,\int_0^{\infty} e^{-\alpha^2} \,\dalpha ~=~ -2I^2 ~.\end{aligned} \nonumber

However, by the Fundamental Theorem of Calculus.

\[\begin{aligned} \int_0^{\infty} \frac{d}{\dalpha}\,\left(\frac{1}{\alpha}\,e^{-\alpha^2}\,\phi(\alpha)\right)~\dalpha ~&=~ \frac{1}{\alpha}\,e^{-\alpha^2}\,\phi(\alpha)~\Biggr|_0^{\infty} ~=~ \left(\lim_{\alpha \to \infty}~\frac{\phi(\alpha)}{\alpha \,e^{\alpha^2}}\right) ~-~ \left(\lim_{\alpha \to 0}~\frac{\phi(\alpha)}{\alpha\,e^{\alpha^2}}\right)\

\[6pt] &=~ 0 ~-~ \left(\lim_{\alpha \to 0}~\frac{\phi(\alpha)}{\alpha\,e^{\alpha^2}}\right) ~\to~ \frac{0}{0} \quad\text{, so by L'H\^{o}pital's Rule}\

6pt] &=~ -\lim_{\alpha \to 0}~\frac{\phi'(\alpha)}{e^{\alpha^2} + 2\alpha^2\,e^{\alpha^2}} ~=~ -\frac{\phi'(0)}{1+0} ~=~ -\tfrac{1}{2}\pi ~.\end{aligned} \nonumber

Thus,

-2I^2 ~=~ -\tfrac{1}{2}\pi \qquad\Rightarrow\qquad I ~=~ \tfrac{1}{2}\sqrt{\pi} \nonumber

which is the desired result.

One immediate consequence of Example

Example \PageIndex{1}: intexpx2

Add text here.

Solution

is that

\int_{-\infty}^{\infty} e^{-x^2} \,\dx ~=~ \sqrt{\pi} \nonumber

since e^{-x^2} is an even function. The following example shows another consequence, as well as how useful substitutions can be in writing integrals in a different form.

Example \PageIndex{1}: intgamma1

Add text here.

Solution

Show that the Gamma function \Gamma\,(t) can be written as

\Gamma\,(t) ~=~ 2\,\int_0^{\infty} y^{2t-1} \, e^{-y^2} ~\dy \quad\text{for all $t > 0$,} \nonumber

and that \Gamma\,\left(\tfrac{1}{2}\right) ~=~ \sqrt{\pi}.

Solution: Let x = y^2, so that \dx = 2y\;\dy. Then x=0~\Rightarrow~y=0~ and x=\infty~\Rightarrow~y=\infty, so

\[\Gamma\,(t) ~=~ \int_0^{\infty} x^{t-1} \, e^{-x} ~\dx ~=~ \int_0^{\infty} (y^2)^{t-1}\,e^{-y^2}~2y~\dy\

6pt] ~=~ 2\,\int_0^{\infty} y^{2t-1} \, e^{-y^2} ~\dy ~. \nonumber

In this form, with the help of Example

Example \PageIndex{1}: intexpx2

Add text here.

Solution

it is now easy to evaluate \Gamma\,\left(\tfrac{1}{2}\right):

\Gamma\,\left(\tfrac{1}{2}\right) ~=~ 2\,\int_0^{\infty} y^{1-1} \, e^{-y^2} ~\dy ~=~ 2\,\int_0^{\infty} e^{-y^2}~\dy ~=~ 2\,\left(\tfrac{1}{2}\sqrt{\pi}\right) ~=~ \sqrt{\pi} \nonumber

\label{eqn:betagamma} B(x,y) ~=~ \frac{\Gamma\,(x)\;\Gamma\,(y)}{\Gamma\,(x+y)} \qquad\text{for all $x > 0$ and $y > 0$.}

Example \PageIndex{1}: intbeta1

Add text here.

Solution

Show that the Beta function B(x,y) can be written as

B(x,y) ~=~ \int_0^{\infty} \frac{u^{x-1}}{(1+u)^{x+y}}~\du ~. \nonumber

Solution: Let u=\frac{t}{1-t}, so that t=\frac{u}{1+u}, 1-t=\frac{1}{1+u}, and \dt = \frac{\du}{(1+u)^2}. Then t=0~\Rightarrow~u=0 and t=1~\Rightarrow~u=\infty, so

B(x,y) ~=~ \int_0^1 t^{x-1}\,(1-t)^{y-1}\,\dt ~=~ \int_0^{\infty} \left(\frac{u}{1+u}\right)^{x-1}\;\left(\frac{1}{1+u}\right)^{y-1} \frac{\du}{(1+u)^2} ~=~ \int_0^{\infty} \frac{u^{x-1}}{(1+u)^{x+y}}~\du ~. \nonumber

Another application of substitutions in integrals is in the evaluation of fractional derivatives. Recall from Section 1.6 that the zero-th derivative of a function is just the function itself, and that derivatives of order n are well-defined for integer values n \ge 1. It turns out that derivatives of fractional orders—e.g. 1/2—can be defined, with the Riemann-Louiville definition being the most common:

Example \PageIndex{1}: halfderivx

Add text here.

Solution

Calculate ~\dfrac{d^{1/2}}{\dx^{1/2}}\,(x)~.

Solution: Here \alpha = \frac{1}{2} and f(x)=x, so that

\frac{d^{1/2}}{\dx^{1/2}}\,(x) ~=~ \frac{1}{\Gamma\,(1-1/2)}\;\ddx\,\int_0^x \frac{t}{(x-t)^{1/2}}\,\dt ~=~ \frac{1}{\sqrt{\pi}}\;\ddx\,\int_0^x \frac{t~\dt}{\sqrt{x-t}} \nonumber

since \Gamma\,\left(\tfrac{1}{2}\right) ~=~ \sqrt{\pi} by Example

Example \PageIndex{1}: intgamma1

Add text here.

Solution

. Use the substitution u=\sqrt{x-t}, so that t=x-u^2 and \dt=-2u\,\du. Then t=0~\Rightarrow~u=\sqrt{x}~ and t=x~\Rightarrow~u=0, so

\[\begin{aligned} \frac{d^{1/2}}{\dx^{1/2}}\,(x) ~&=~ \frac{1}{\sqrt{\pi}}\;\ddx\,\int_{\sqrt{x}}^0 \frac{(x-u^2)\,(-2u~\du)}{u} ~=~ \frac{2}{\sqrt{\pi}}\;\ddx\,\int_0^{\sqrt{x}} (x ~-~ u^2)~\du\

\[6pt] &=~ \frac{2}{\sqrt{\pi}}\;\ddx\,\left(xu ~-~ \tfrac{1}{3}\,u^3\right)~\Biggr|_{u=0}^{u=\sqrt{x}} ~=~ \frac{2}{\sqrt{\pi}}\;\ddx\,\left(x^{3/2} ~-~ \tfrac{1}{3}\,x^{3/2}\right)\

6pt] &=~ \frac{2}{\sqrt{\pi}}\;\ddx\,\left(\tfrac{2}{3}\,x^{3/2}\right) ~=~ \frac{2}{\sqrt{\pi}}\,\sqrt{x}\end{aligned} \nonumber

\frac{d^{n+\alpha}}{\dx^{n+\alpha}}\,f(x) ~=~ \frac{d^{\alpha}}{\dx^{\alpha}}\,\left(\frac{d^{n}}{\dx^{n}}\,f(x)\right) \nonumber

Recall from Section 6.3 that the trigonometric substitution x=r\,\cos\,\theta—or its sister substitution x=r\,\sin\,\theta—was motivated by trying to find the area of a circle of radius r. To simplify matters, let r=1 so that points on the unit circle can be identified with the angle \theta via that substitution, with \theta as shown in Figure [fig:circle2](a) below.

Figure [fig:circle2](b) shows a different identification of points on the unit circle—by slope. This will be the basis for a half-angle substitution for evaluating certain integrals.

Let A be the point (-1,0), then for any other point P on the unit circle draw a line from A through P until it intersects the line x=1, as shown in Figure [fig:circle3] below:

From geometry you know that the inscribed angle that the line \overline{AP} makes with the x-axis is half the measure of the central angle \theta. So the slope of \overline{AP} is the tangent of that angle: \tan\,\frac{1}{2}\theta = \frac{t}{1} = t, which is measured along the y-axis and can take any real value. Each point on the unit circle—except A—can be identified with that slope t. Figure [fig:circle3] shows only positive slopes—reflect the picture about the x-axis for negative slopes. The figure shows that

\sin\,\tfrac{1}{2}\theta ~=~ \frac{t}{\sqrt{1+t^2}} \qquad\text{and}\qquad \cos\,\tfrac{1}{2}\theta ~=~ \frac{1}{\sqrt{1+t^2}} \nonumber

so that by the double-angle identities for sine and cosine,

\sin\,\theta ~=~ 2\,\sin\,\tfrac{1}{2}\theta\,\cos\,\tfrac{1}{2}\theta ~=~ 2\,\frac{t}{\sqrt{1+t^2}}\,\frac{1}{\sqrt{1+t^2}} ~=~ \frac{2t}{1+t^2} \nonumber

and

\cos\,\theta ~=~ \cos^2 \tfrac{1}{2}\theta ~-~ \sin^2 \tfrac{1}{2}\theta ~=~ \frac{1}{1+t^2} ~-~ \frac{t^2}{1+t^2} ~=~ \frac{1-t^2}{1+t^2} ~. \nonumber

Since \theta = 2\,\tan^{-1} \,t, then

\dtheta ~=~ d\,\left(2\,\tan^{-1} t\right) ~=~ \frac{2\,\dt}{1+t^2} ~. \nonumber

Below is a summary of the substitution: The half-angle substitution thus turns rational functions of \sin\,\theta and \cos\,\theta into rational functions of t, which can be integrated using partial fractions or another method.

Example \PageIndex{1}: inthalfangle1

Add text here.

Solution

Evaluate ~\displaystyle\int \frac{\dtheta}{1 \;+\; \sin\,\theta \;+\; \cos\,\theta}.

Solution: Using t = \tan\,\tfrac{1}{2}\theta, the denominator of the integrand is

1 ~+~ \sin\,\theta ~+~ \cos\,\theta ~=~ \frac{1+t^2}{1+t^2} ~+~ \frac{2t}{1+t^2} ~+~ \frac{1-t^2}{1+t^2} ~=~ \frac{2t + 2}{1+t^2} \nonumber

so that

\[\begin{aligned} \int \frac{\dtheta}{1 \;+\; \sin\,\theta \;+\; \cos\,\theta} ~&=~ \mathop{\mathlarger{\mathlarger{\int}}} \frac{\frac{2\,\dt}{1+t^2}}{\frac{2t + 2}{1+t^2}} ~=~ \int \frac{\dt}{t+1}\

6pt] &=~ \ln\,\abs{t+1} ~+~ C\\ &=~ \ln\,\Abs{\tan\,\tfrac{1}{2}\theta \;+\;1} ~+~ C\end{aligned} \nonumber

Example \PageIndex{1}: inthalfangle2

Add text here.

Solution

Evaluate ~\displaystyle\int \frac{\dtheta}{3\,\sin\,\theta \;+\; 4\,\cos\,\theta}~.

Solution: Using t = \tan\,\tfrac{1}{2}\theta, the integral becomes

\[\begin{aligned} \int \frac{\dtheta}{3\,\sin\,\theta \;+\;4\,\cos\,\theta} ~&=~ \mathop{\mathlarger{\mathlarger{\int}}} \frac{\frac{2\,\dt}{1+t^2}}{3\,\frac{2t}{1+t^2} \;+\; 4\,\frac{1-t^2}{1+t^2}} ~=~ \int \frac{-1}{2t^2 - 3t - 2}\,\dt\

6pt] &=~ \int \frac{-1}{(2t+1)\,(t-2)}\,\dt ~=~ \int \left(\frac{A}{2t+1} ~+~ \frac{B}{t-2}\right)\,\dt\end{aligned} \nonumber

where

\begin{aligned} {3} \text{coefficient of $t$}&: \quad & A ~+~ 2B ~&=~ 0 \quad\Rightarrow\quad A ~=~ -2B\\ \text{constant term}&: & -2A ~+~ B ~&=~ -1 \quad\Rightarrow\quad 4B ~+~ B ~=~ -1 \quad\Rightarrow\quad B ~=~ -\frac{1}{5} ~~\text{and}~~ A ~=~ \frac{2}{5}\end{aligned} \nonumber

Thus,

\[\begin{aligned} \int \frac{\dtheta}{3\,\sin\,\theta \;+\;4\,\cos\,\theta} ~&=~ \int \left(\frac{\frac{2}{5}}{2t+1} ~+~ \frac{-\frac{1}{5}}{t-2}\right)\,\dt ~=~ \frac{1}{5}\,\ln\,\abs{2t+1} ~-~ \frac{1}{5}\,\ln\,\abs{t-2} ~+~ C\

4pt] &=~ \frac{1}{5}\,\ln\,\Abs{2\,\tan\,\tfrac{1}{2}\theta \;+\; 1} ~-~ \frac{1}{5}\,\ln\,\Abs{\tan\,\tfrac{1}{2}\theta \;-\; 2} ~+~ C\end{aligned} \nonumber

By the half-angle substitution t = \tan\,\tfrac{1}{2}\theta,

\frac{\sin\,\theta}{1 \;+\; \cos\,\theta} ~=~ \frac{\dfrac{2t}{1+t^2}}{\dfrac{1+t^2}{1+t^2} + \dfrac{1-t^2}{1+t^2}} ~=~ \frac{\dfrac{2t}{1+t^2}}{\dfrac{2}{1+t^2}} ~=~ t \nonumber

which yields the useful half-angle identities:9

Example \PageIndex{1}: inthalfangle3

Add text here.

Solution

Evaluate ~\displaystyle\int \frac{\sin\,\theta}{1 \;+\; \cos\,\theta}\,\dtheta~.

Solution: Though you could use the half-angle substitution t = \tan\,\tfrac{1}{2}\theta, it is easier to use the half-angle identity ([eqn:halftan1]) directly, since

\int \frac{\sin\,\theta}{1 \;+\; \cos\,\theta}\,\dtheta ~=~ \int \tan\,\tfrac{1}{2}\theta~\dtheta ~=~ 2\,\ln\,\Abs{\sec\,\tfrac{1}{2}\theta} ~+~ C \nonumber

by formula ([eqn:inttanu]) in Section 6.3.

[sec6dot5]

For Exercises 1-12, evaluate the given integral.

4

\displaystyle\int \frac{1 \;-\; 2\,\cos\,\theta}{\sin\,\theta}\;\dtheta

\displaystyle\int \frac{\dtheta}{3 \;-\; 5\,\sin\,\theta}

\displaystyle\int \frac{\dtheta}{2 \;-\; \sin\,\theta}

\displaystyle\int \frac{\dtheta}{4 \;+\; \sin\,\theta}

4

\displaystyle\int \frac{\sin\,\theta}{2 \;-\; \sin\,\theta}\;\dtheta

\displaystyle\int \frac{\dtheta}{5 \;-\; 3\,\cos\,\theta}

\displaystyle\int \frac{\dtheta}{1 \;+\; \sin\,\theta \;-\; \cos\,\theta}

\displaystyle\int \frac{\dtheta}{1 \;-\; \sin\,\theta \;+\; \cos\,\theta}

4

\displaystyle\int \frac{\cot\,\theta}{1 \;+\; \sin\,\theta}\;\dtheta

\displaystyle\int \frac{1 \;-\; \cos\,\theta}{3\,\sin\,\theta}\;\dtheta

\displaystyle\int_{-\infty}^{\infty} e^{-x^2/2}\,\dx

\displaystyle\int_{-\infty}^{\infty} x^2 \,e^{-x^6}\,\dx

Consider the integral ~\displaystyle\int \frac{\sin\,\theta}{1 \;+\; \cos\,\theta}\,\dtheta~ from Example

Example \PageIndex{1}: inthalfangle3

Add text here.

Solution

.

  1. Evaluate the integral using the substitution u=1 + \cos\,\theta.
  2. Evaluate the integral using the half-angle substitution t = \tan\,\tfrac{1}{2}\theta.
  3. Show that the answers from parts (a) and (b) are equivalent to the result from Example
    Example \PageIndex{1}: inthalfangle3

    Add text here.

    Solution

    .

[[1.]]

Evaluate the integral ~\displaystyle\int \frac{\dtheta}{3\,\sin\,\theta \;+\; 4\,\cos\,\theta}~ from Example

Example \PageIndex{1}: inthalfangle2

Add text here.

Solution

by noting that

\[\begin{aligned} \int \frac{\dtheta}{3\,\sin\,\theta \;+\; 4\,\cos\,\theta} ~&=~ \int \frac{\dtheta}{5\,\left(\frac{3}{5}\,\sin\,\theta \;+\; \frac{4}{5}\,\cos\,\theta\right)}\

\[5pt] &=~ \int \frac{\dtheta}{5\,\left(\cos\,\phi\;\sin\,\theta \;+\; \sin\,\phi\;\cos\,\theta\right)}\

5pt] &=~ \int \frac{\dtheta}{5\,\sin\,(\theta + \phi)} ~=~ \frac{1}{5}\,\int \csc\,(\theta + \phi)~\dtheta\end{aligned} \nonumber

by the sine addition formula, where \phi is the angle in the right triangle shown above. Complete the integration and show that your answer is equivalent to the result from Example

Example \PageIndex{1}: inthalfangle2

Add text here.

Solution

. [[1.]]

Show directly from the definition of the Beta function that B(x,y) = B(y,x) for all x > 0 and y > 0.

[exer:betatrig] Show that the Beta function B(x,y) can be written as

B(x,y) ~=~ \int_0^{\pi/2} 2\,\sin^{2x-1}(\theta)~\cos^{2y-1}(\theta)~\dtheta \qquad\text{for all $x > 0$ and $y > 0$.} \nonumber

[exer:intsinmcosn] Use Exercise [exer:betatrig] and formula ([eqn:betagamma]) to show that

\int_0^{\pi/2} \sin^{m}\theta~\cos^{n}\theta~\dtheta ~=~ \frac{\Gamma\,\left(\dfrac{m+1}{2}\right) \; \Gamma\,\left(\dfrac{n+1}{2}\right)}{2\,\Gamma\,\left(\dfrac{m+n}{2} + 1\right)} \qquad\text{for all $m > -1$ and $n > -1$.} \nonumber

Use Exercise [exer:gamma] from Section 6.1, as well as Exercise [exer:intsinmcosn] above, to show that for m=1, 2, 3, \ldots,

\int_0^{\pi/2} \sin^{2m}\theta~\dtheta ~=~ \frac{\sqrt{\pi}\;\Gamma\,\left(m + \frac{1}{2}\right)}{2\,(m!)} \qquad\text{and}\qquad \int_0^{\pi/2} \sin^{2m+1}\theta~\dtheta ~=~ \frac{\sqrt{\pi}\;(m!)}{2\,\Gamma\,\left(m + \frac{3}{2}\right)} ~. \nonumber

2

Show that ~\displaystyle\int_0^{\infty} \dfrac{\ln\,x}{1 + x^2}\,\dx ~=~ 0.

Show that ~\displaystyle\int_0^{\infty} \dfrac{x^a}{a^x}\,\dx ~=~ \dfrac{\Gamma\,(a+1)}{(\ln\,a)^{a+1}}~ for a > 1.

Use the result from Example

Example \PageIndex{1}: halfderivx

Add text here.

Solution

to show that

\frac{d^{1/2}}{\dx^{1/2}}\,\left(\frac{d^{1/2}}{\dx^{1/2}}\,(x)\right) ~=~ 1 ~=~ \ddx\,(x) ~. \nonumber

2

Calculate ~\dfrac{d^{1/2}}{\dx^{1/2}}\,(c)~ for all constants c.

Calculate ~\dfrac{d^{1/3}}{\dx^{1/3}}\,(x)~.

Show that ~\displaystyle\int_0^1 \dfrac{1}{\sqrt{1 - x^n}}\,\dx ~=~ \tfrac{1}{n}\,B\left(\tfrac{1}{n},\tfrac{1}{2}\right)~ for n \ge 1.

Show that the Gamma function \Gamma\,(t) can be written as

\Gamma\,(t) ~=~ p^t\,\int_0^{\infty} u^{t-1} \,e^{-pu}~\du \quad\text{for all $t > 0$ and $p > 0$.} \nonumber

Show that the Gamma function \Gamma\,(t) can be written as

\Gamma\,(t) ~=~ \int_0^1 \left(\ln\,\left(\frac{1}{u}\right)\right)^{t-1}\,\du \quad\text{for all $t > 0$.} \nonumber

Using the result from Exercise [exer:eaxtrigbx] in Section 6.1 that

\int e^{ax}\,\cos\,bx~\dx ~=~ \frac{e^{ax}\,(a\,\cos\,bx ~+~ b\,\sin\,bx)}{a^2 + b^2} \nonumber

for all constants a and b \ne 0, differentiate under the integral sign to show that for all \alpha > 0

\int_0^{\infty} x\,e^{-x} \sin\,\alpha x~\dx ~=~ \frac{2 \alpha}{(1 + \alpha^2)^2} ~. \nonumber

[[1.]]

Use the Leibniz rule and formula ([eqn:sqrta2u2tan]) from Section 6.3 to show that for all a > 0,

\int \frac{\dx}{\sqrt{a^2 + x^2}} ~=~ \ln\;\Abs{x + \sqrt{a^2 + x^2}\,} ~+~ C ~. \nonumber

Use Example

Example \PageIndex{1}: intbeta1

Add text here.

Solution

to show that the Beta function satisfies the relation

B(x,1-x) ~=~ \int_0^1 \,\frac{t^{-x} \;+\; t^{x-1}}{1 + t}\,\dt \quad\text{for all $0 < x < 1$.} \nonumber

(Hint: First use a substitution to show that \displaystyle\int_0^{\infty} \dfrac{u^{x-1}}{1 + u}\,\du = \displaystyle\int_0^{\infty} \dfrac{t^{-x}}{1 + t}\,\dt.)

Show that for all a > -1,

\int_0^{\pi/2} \frac{\dtheta}{1 \;+\; a\,\sin^2 \theta} ~=~ \frac{\pi}{2\,\sqrt{1+a}} ~. \nonumber


This page titled 6.5: Miscellaneous Integration Methods is shared under a GNU General Public License 3.0 license and was authored, remixed, and/or curated by Michael Corral via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?