3.3: Homework- Power Rule
- Page ID
- 88643
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
- Compute the following derivatives. Do not use the definition of the derivative. Instead, use the linearity and power rules we talked about in this section.
- \(\cfrac{d}{dx}\ x^{15}\)
\(15 x^{14}\)ans
- \(\cfrac{d}{dx}\ 3x^6\)
\(18x^5\)ans
- \(\cfrac{d}{dx}\ \cfrac{1}{2}x^{4}\)
\(2x^3\)ans
- \(\cfrac{d}{dx}\ 3 x^2 + 6x - 1\)
\(6x + 6\)ans
- \(\cfrac{d}{dx}\ (2x + 3)^2\)
\(8x + 12\)ans
- ans
- \(\cfrac{d}{dx}\ 7 x^{-4}\)
\(-28x^{-5}\)ans
- ans
- \(\cfrac{d}{dx}\ \sqrt{x}\)
ans
- \(\cfrac{d}{dx}\ \frac{1}{x}\)
\(-x^{-2}\)ans
- \(\cfrac{d}{dx}\ \sqrt[3]{x^2}\)
ans
- \(\cfrac{d}{dx}\ \frac{2}{\sqrt{x}}\)
ans
- \(\cfrac{d}{dx}\ x^{15}\)