Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercises

[exer:1] Find the point on the plane 2x+3y+z=7 closest to (1,2,3).

[exer:2] Find the extreme values of f(x,y)=2x+y subject to x2+y2=5.

[exer:3] Suppose that a,b>0 and aα2+bβ2=1. Find the extreme values of f(x,y)=βx+αy subject to ax2+by2=1.

[exer:4] Find the points on the circle x2+y2=320 closest to and farthest from (2,4).

[exer:5] Find the extreme values of f(x,y,z)=2x+3y+zsubject tox2+2y2+3z2=1.

[exer:6] Find the maximum value of f(x,y)=xy on the line ax+by=1, where a,b>0.

[exer:7] A rectangle has perimeter p. Find its largest possible area.

[exer:8] A rectangle has area A. Find its smallest possible perimeter.

[exer:9] A closed rectangular box has surface area A. Find it largest possible volume.

[exer:10] The sides and bottom of a rectangular box have total area A. Find its largest possible volume.

[exer:11] A rectangular box with no top has volume V. Find its smallest possible surface area.

[exer:12] Maximize f(x,y,z)=xyz subject to xa+yb+zc=1, where a, b, c>0.

[exer:13] Two vertices of a triangle are (a,0) and (a,0), and the third is on the ellipse x2a2+y2b2=1. Find its largest possible area.

[exer:14] Show that the triangle with the greatest possible area for a given perimeter is equilateral, given that the area of a triangle with sides x, y, z and perimeter s is A=s(sx)(sy)(sz).

[exer:15] A box with sides parallel to the coordinate planes has its vertices on the ellipsoid x2a2+y2b2+z2c2=1. Find its largest possible volume.

[exer:16] Derive a formula for the distance from (x1,y1,z1) to the plane ax+by+cz=σ.

[exer:17] Let Xi=(xi,yi,zi), 1in. Find the point in the plane ax+by+cz=σ for which i=1n|XXi|2 is a minimum. Assume that none of the Xi are in the plane.

[exer:18] Find the extreme values of f(X)=i=1n(xici)2 subject to i=1nxi2=1.

[exer:19] Find the extreme values of f(x,y,z)=2xy+2xz+2yzsubject tox2+y2+z2=1.

[exer:20] Find the extreme values of f(x,y,z)=3x2+2y2+3z2+2xzsubject tox2+y2+z2=1.

[exer:21] Find the extreme values of f(x,y)=x2+8xy+4y2subject tox2+2xy+4y2=1.

[exer:22] Find the extreme value of f(x,y)=α+βxy subject to (ax+by)2=1. Assume that ab0.

[exer:23] Find the extreme values of f(x,y,z)=x+y2+2z subject to 4x2+9y236z2=36.

[exer:24] Find the extreme values of f(x,y,z,w)=(x+z)(y+w) subject to x2+y2+z2+w2=1.

[exer:25] Find the extreme values of f(x,y,z,w)=(x+z)(y+w) subject to x2+y2=1and z2+w2=1.

[exer:26] Find the extreme values of f(x,y,z,w)=(x+z)(y+w) subject to x2+z2=1and y2+w2=1.

[exer:27] Find the distance between the circle x2+y2=1 the hyperbola xy=1.

[exer:28] Minimize f(x,y,x)=x2α2+y2β2+z2γ2 subject to ax+by+cz=d and x, y, z>0.

[exer:29] Find the distance from (c1,c2,,cn) to the plane a1x1+a2x2++anxn=d.

[exer:30] Find the maximum value of f(X)=i=1naixi2 subject to i=1nbixi4=1, where p, q>0 and ai, bi xi>0, 1in.

[exer:31] Find the extreme value of f(X)=i=1naixip subject to i=1nbixiq=1, where p, q>0 and ai, bi, xi>0, 1in.

[exer:32] Find the minimum value of f(x,y,z,w)=x2+2y2+z2+w2 subject to x+y+2z+3w=1x+y+2z+3w=2.

[exer:33] Find the minimum value of f(x,y,z)=x2a2+y2b2+z2c2 subject to p1x+p2y+p3z=d, assuming that at least one of p1, p2, p3 is nonzero.

[exer:34] Find the extreme values of f(x,y,z)=p1x+p2y+p3z subject to x2a2+y2b2+z2c2=1, assuming that at least one of p1, p2, p3 is nonzero.

[exer:35] Find the distance from (1,2,3) to the intersection of the planes
x+2y3z=4 and 2xy+2z=5.

[exer:36] Find the extreme values of f(x,y,z)=2x+y+2z subject to x2+y2=4 and x+z=2.

[exer:37] Find the distance between the parabola y=1+x2 and the line x+y=1.

[exer:38] Find the distance between the ellipsoid 3x2+9y2+6z2=10 and the plane 3x+3y+6z=70.

[exer:39] Show that the extreme values of f(x,y,z)=xy+yz+zx subject to x2a2+y2b2+z2c2=1 are the largest and smallest eigenvalues of the matrix [0a2a2b20b2c2c20].

[exer:40] Show that the extreme values of f(x,y,z)=xy+2yz+2zx subject to x2a2+y2b2+z2c2=1 are the largest and smallest eigenvalues of the matrix [0a2/2a2b2/20b2c2c20].

[exer:41] Find the extreme values of x(y+z) subject to x2a2+y2b2+z2c2=1.

[exer:42] Let a, b, c, p, q, r, α, β, and γ be positive constants. Find the maximum value of f(x,y,z)=xαyβzγ subject to axp+byq+czr=1 andx,y,z>0.

[exer:43] Find the extreme values of f(x,y,z,w)=xwyzsubject tox2+2y2=4and2z2+w2=9.

[exer:44] Let a, b, c,and d be positive. Find the extreme values of f(x,y,z,w)=xwyz subject to ax2+by2=1,cz2+dw2=1, if (a) adbc; (b) ad=bc.

[exer:45] Minimize f(x,y,z)=αx2+βy2+γz2 subject to a1x+a2y+a3z=c andb1x+b2y+b3z=d. Assume that α,β,γ>0,a12+a22+a320, andb12+b22+b320. Formulate and apply a required additional assumption.

[exer:46] Minimize f(X,Y)=i=1n(xiαi)2 subject to i=1naixi=c andi=1nbixi=d, where i=1nai2=i=1nbi2=1 andi=1naibi=0.

[exer:47] Find (x10,x20,,xn0) to minimize Q(X)=i=1nxi2 subject to i=1nxi=1andi=1nixi=0. Prove explicitly that if j=1nyi=1,i=1niyi=0 and yixi0 for some i{1,2,,n}, then i=1nyi2>i=1nxi02.

[exer:48] Let p1, p2, …, pn and s be positive numbers. Maximize f(X)=(sx1)p1(sx2)p2(sxn)pn subject to x1+x2++xn=s.

[exer:49] Maximize f(X)=x1p1x2p2xnpn subject to xi>0, 1in, and i=1nxiσi=S, where p1, p2,…, pn, σ1, σ2, …, σn, and V are given positive numbers.

[exer:50] Maximize f(X)=i=1nxiσi subject to xi>0, 1in, and x1p1x2p2xnpn=V, where p1, p2,…, pn, σ1, σ2, …, σn, and S are given positive numbers.

[exer:51] Suppose that α1, α2, …αn are positive and at least one of a1, a2, …, an is nonzero. Let (c1,c2,,cn) be given. Minimize Q(X)=i=1n(xici)2αi subject to a1x1+a2x2++anxn=d.

[exer:52] Schwarz’s inequality says that (a1,a2,,an) and (x1,x2,,xn) are arbitrary n-tuples of real numbers, then |a1x1+a2x2++anxn|(a12+a22++an2)1/2(x12+x22++xn2)1/2. Prove this by finding the extreme values of f(X)=i=1naixi subject to i=1nxi2 = σ2.

[exer:53] Let x1, x2, …, xm, r1, r2, …, rm be positive and r1+r2++rm=r. Show that (x1r1x2r2xmrm)1/rr1x1+r2x2+rmxmr, and give necessary and sufficient conditions for equality. (Hint: Maximize x1r1x2r2xmrm subject to j=1mrjxj=σ>0, x1>0, x2>0, …, xm>0.)

[exer:54] Let A=[aij] be an m×n matrix. Suppose that p1, p2, …, pm>0 and j=1m1pj=1, and define σi=j=1n|aij|pi,1im. Use Exercise [exer:53] to show that |j=1naija2jamj|σ11/p1σ21/p2σm1/pm. (With m=2 this is Hölder’s inequality, which reduces to Schwarz’s inequality if p1=p2=2.)

[exer:55] Let c0, c1, …, cm be given constants and nm+1. Show that the minimum value of Q(X)=r=0nxr2 subject to r=0nxrrs=cs,0sm, is attained when xr=s=0mλsrs,0rn, where =0mσs+λ=cs andσs=r=0nrs,0sm. Show that if {xr}r=0n satisfies the constraints and xrxr0 for some r, then r=0nxr2>r=0nxr02.

[exer:56] Suppose that n>2k. Show that the minimum value of f(W)=i=nnwi2, subject to the constraint i=nnwiP(ri)=P(r) whenever r is an integer and P is a polynomial of degree 2k, is attained with wi0=r=02kλrir,1in, where r=02kλrσr+s={1if s=0,0if 1s2k, andσs=j=nnjs. Show that if {wi}i=nn satisfies the constraint and wiwi0 for some i, then i=nnwi2>i=nnwi02.

[exer:57] Suppose that nk. Show that the minimum value of fi=0nwi2, subject to the constraint i=0nwiP(ri)=P(r+1) whenever r is an integer and P is a polynomial of degree k, is attained with wi0=r=0kλrir,0in, where r=0kσr+sλr=(1)s,0sk,andσ=i=0ni,02k. Show that if i=0nuiP(ri)=P(r+1) whenever r is an integer and P is a polynomial of degree k, and uiwi0 for some i, then i=0nui2>i=0nwi02.

[exer:58] Minimize f(X)=i=1n(xici)2αi subject to i=1nairxi=dr,1rm Assume that m>1, α1, α2, … αm>0, and i=1nαiairais={1 if r=s,0 if rs.

Answers to selected exercises

[exer:1]. (15727,257) ±5 1/ab, 1/ab

[exer:4]. (8,16) is closest, (8,16) is farthest. ±53/6 1/4ab p2/4

4A A3/2/66 A3/2/63 3(2V)2/3 abc/27

ab 8abc/33

[exer:18]. (1μ)2 and (1+μ)2, where μ=(j=1ncj2)1/2 1, 2 2, 4

2/3, 2 α±|β|/4|ab| 5, 73/16 ±1 ±2

±2 21 d2(aα)2+(bβ2)+(cγ)2

|da1c1a2c2ancn)ai|a12+a22+an2 (i=1nai2bi)1/2

[exer:31]. (i=1naiq/(qp)bip/(pq))1p/q is a constrained maximum if p<q, a constrained minimum if p>q

689/845 d2p12a2+p22b2+p32c2 ±(p12a2+p22b2+p32c2)1/2

[exer:35]. 693/45 [exer:36]. 2, 6 7/42 106/3 ±|c|a2+b2/2

αβγpqr(αp+βq+γr)3 [exer:43]. ±3 ±1/bc (b) ±1/ad=±1/bc

[exer:46]. (ci=1naiαi)2+(di=1nbiαi)2 xi0=(4n+26i)/n(n1)

[exer:48]. [(n1)sP]Pp1p1p2p2pnpn

[exer:49]. (Sp1+p2++pn)p1+p2++pn(p1σ1)p1(p2σ2)p2(pnσn)pn

[exer:50]. (p1+p2++pn)(V(σ1p1)p1(σ2p2)p2(σnpn)pn)1p1+p2++pn

[exer:51]. (di=1naici))2/(i=1nai2αi) ±(i=1nai2)1/2(i=1nxi02)1/2

r=1m(dri=1nairci)2

INSTRUCT0R’S SolutionS MANUAL

SolutionS OF EXERCISES

L=(x1)2+(y+2)2+(z3)22λ(2x+3y+z) Lx=x12λ,Ly=y+23λ,Lz=z3λ x0=1+2λ,y0=2+3λ,z0=3+λ 2(1+2λ)+3(2+3λ)+(3+λ)=7,λ=47 x0=157,y0=27,z0=257 The distance from (x01,y01,z01) to the plane is (x01)2+(y0+2)2+(z03)2=4λ2+9λ2+λ2=427.

L=2x+yλ2(x2+y2), Lx=2λx, Ly=1λy

x0=2y0,5y02=5,(x0,y0)=±(2,1) Constrained minimum =5, constrained maximum =5.

L=βx+αyλ2(ax2+by2)

Lx=βλax,Ly=αλby,x0=βλa,y0=αλb 1=ax02+by02=1λ2(β2a+α2b)=1abλ2(aα2+bβ2)=1abλ2. 1λ=±ab; (x0,y0)=±(βba,αab). Choosing “+” yields the constrained maximum f(x0,y0)=β2ba+α2ab=bβ2ab+aα2ab=1ab. Choosing “” yields the constrained minimum 1ab.

L=(x2)2+(y4)2λ(x2+y2)2

Lx(x,y)=(x2)λx,Ly(x,y)=(y4)λy x02x0=y04y0=λ, soy0=2x0. Therefore, x02+y02=5x02=320, (x0,y0)=±(8,16) so the constrained critical points are (8,16) and (8,16); (8,16) is closest to (2,4) and (8,16) is farthest.

L=2x+3y+zλ2(x2+2y2+3z2)

Lx=2λx,Ly=32λy,Lz=13λz x0=2λy0=32λ,z0=13λ,x02+2y02+3z02=536λ2=1,λ=±53/6. Since f(2/λ,3/2λ,1/3λ)=536λ=±λ, the constrained extreme values are ±53/6.

L=xyλ(ax+by), Lx(x,y)=yλa, Ly=xλb

x0=λb,y0=λa,ax0+by0=2λab=1,λ=12ab x0=12a,y0=12b,x0y0=14ab=constrained maximum

p=2x+2y, A=xy, L=xyλ(x+y), Lx=yλ, Ly=xλ, y0=x0, x0=p/4, Amax=p2/4.

Let x and y denote lengths of sides. We must mimimize x+y subject to xy=A. L=x+yλxy,Lx=1λy,Ly=1λx,x0=y0,x0y0=A,x0=A. The minimum perimeter is 4A.

Denote the vertices of the box by (0,0,0), (x,0,0), (0,y,0), and (0,0,z). V=xyz,A=2xz+2yz+2xy,L=xyzλ(xz+yz+xy) Lx=yzλ(z+y),Ly=xzλ(z+x),Lz=xyλ(x+y) y0z0=λ(z0+y0),x0z0=λ(z0+x0),x0y0=λ(x0+y0) x0z0+x0y0=z0y0+x0y0=x0z0+y0z0,x0=y0=z0 A=6z02,z=A6,Vmax=z03=A3/266.

Denote the vertices of the box by (0,0,0), (x,0,0), (0,y,0), and (0,0,z). V=xyz,A=2xz+2yz+xy,L=xyzλ(2xz+2yz+xy) Lx=yzλ(2z+y),Ly=xzλ(2z+x),Lz=xyλ(2x+2y) y0z0=λ(2z0+y0),x0z0=λ(2z0+x0),x0y0=λ(2x0+2y0) x0y0z0=λx0(2z0+y0),x0y0z0=λy0(2z0+x0),x0y0z0=λz0(2x0+2y0) 2x0z0+x0y0=2y0z0+x0y0=2x0z0+2y0z0 x0=y0=2z0,A=12z02,z0=A12,Vmax=z03=A3/263.

Denote the vertices of the box by (0,0,0), (x,0,0), (0,y,0), and (0,0,z). V=xyz,A=2xz+2yz+xy,L=2xz+2yz+xyλxyz, Lx=2z+yλyz,Ly=2z+xλxz,Lz=2x+2yλxy 2z0+y0=λy0z0,2z0+x0=λx0z0,2x0+2y0λx0y0 2x0z0+x0y0=2y0z0+x0y0=2x0z0+2y0z0 x0=y0=2z0,V=4z03,z0=(2V)1/32,x0=y0=(2V)1/3,Amin=3(2V)2/3

L=xyzλ(xa+yb+zc), Lx=yzλa, Ly=xzλb, Lz=xyλc y0z0=λa,x0z0=λb,x0y0=λc,x0a=y0b=z0c=13,Vmax=abc27.

We may assume without loss of generality that y>0, so A=ay. L=ayλ2(x2a2+y2b2),Lx=λxa2,x0=0,y0=b,Amax=ab.

We must maximize A2=s(sx)(sy)(sz) subject to x+y+z=s. L=s(sx)(sy)(sz)λ(x+y+z) Lx=s(sy)(sz)λ,Ly=s(sx)(sz)λ,Lz=s(sx)(sy)λ s(sy0)(sz0)=s(sx0)(sz0)=s(sx0)(sy0)=λ,x0=y0=z0=s3.

We must maximize V=8xyz subject to x2a2+y2b2+z2c2=1. L=xyzλ2(x2a2+y2b2+z2c2) Lx=yzλxa2,Ly=xzλyb2,Lz=xyλzc2 y0z0=λx0a2,x0z0=λy0b2,x0y0=λzc2 x02a2=y02b2=z02c2=λx0y0z0 To satisfy the constraint, x0=a3, y0=b3, z0=c3, so Vmax=8abc33.

Let (x0,y0,z0) be the point on the plane closest to (x1,y1,z1), so (A)ax0+by0+cz0=σ. L=(xx1)2+(yy1)2+(zz1)22λ(ax+by+cz) Lx=(xx1)λa,Ly=(yy1)λb,Lz=(zz1)λc (B)x0=x1+λa,y0=y1+λb,andz0=z1+λc, (C)d2=λ2(a2+b2+c2) (A) and (B) imply that ax1+by1+cz1+λ(a2+b2+c2)=σ, so λ=σax1by1cz1a2+b2+c2, and (C) implies that d=|σax1by1cz1|a2+b2+c2.

L=12i=1n[(xxi)2+(yyi)2+(zzi)2]λ(ax+by+cz) Lx=nxλai=1nxi,Ly=nyλbi=1nyi,Lz=nzλbi=1nzi. x0=1n[λa+i=1nxi],y0=1n[λb+i=1nyi],z0=1n[λc+i=1nzi] ax0+by0+cz0=1n[λ(a2+b2+c2)+i=1n(axi+byi+czi)] Since ax0+by0+cz0=σ, λ=(a2+b2+c2)1i=1n(σaxibyiczi).

L=12(i=1n(xici)2λi=1nxi2),  Lxi=xiciλxi,  xi0=(1λ)1ci

i=1nxi02=(1λ)2j=1ncj2=1, so λ=1±μ where μ=(j=1ncj2)1/2 Since xi0=ci+λxi0 and i=1nxi02=1, i=1n(xi0ci)2=λ2. Since xi0=(1λ)1ci, the constrained maximum is (1+μ)2, attained with xi0=ci/μ, 1in, and the constrained minimum is (1μ)2, attained with xi0=ci/μ, 1in.

[exer:19].

L=xy+xz+yzλ2(x2+y2+z2)

Lx=y+zλx,Ly=x+zλy,Lz=x+yλz

[011101110][x0y0z0]=λ[x0y0z0]. The eigenvalues of the matrix are 2 and 1, which are therefore the extremes of Q subject to the constraint.

L=3x2+2y2+3z2+2xz2λ2(x2+y2+z2)

Lx=3x+zλx,Ly=2yλy,Lz=3z+xλz

[301020103][x0y0z0]=λ[x0y0z0] The largest and smallest eigenvalues of the matrix are 4 and 2, which are therefore the extremes of Q subject to the constraint.

L=x2+8xy+4y2λ(x2+2xy+4y2)2 Lx=(x+4y)λ(x+y)=(1λ)x+(4λ)yLy=(4x+4y)λ(x+4y)=(4λ)x+4(1λy) [1λ4λ4λ4(1λ)][x0y0]=[00], so 4(λ1)2(λ4)2=3(λ2)(λ+2)=0. If λ=2, then x0=2y0. To satisfy the constraint, (x0,y0)=±(13,123) and f(x0,y0)=2. If λ=2, then x0=2y0. To satisfy the constraint, (x0,y0)=±(13,123) and f(x0,y0)=23.

L=α+βxyλ2(ax+by)2,  Lx=βyλa(ax+by),  Ly=βxλb(ax+by)

x0=λb(ax0+by0)β, y0=λa(ax0+by0)β, (x0,y0)=±(λbβ,λaβ)

ax0+by0=2λabβ=±1, λ=±β2ab, (x0,y0)=±(12a,12b)

(α+βx0y0)max=α+|β|4|ab|, (α+βx0y0)min=α|β|4|ab|

L=x+y2+2zλ2(4x2+9y236z2)

Lx=14λx,Ly=2y9λy,Lz=2+36λz x0=14λ,z0=118λ=29x0, and either y0=0 or λ=29. If y0=0, then 36=4x0236z02=(436(29)2)x02=209x02,so(x0,z0)=±(95,25) and f(x0,0,z0)=x0+2z0=±5. If λ=29, then x0=98 and z0=14, so 9y02=36(1+z02)4x02=36(1+116)4(8164)=53116, soy0=±594. Therefore, the constrained maximum is f(98,594,14)=f(98,594,14)=7316 and the constrained minimum is f(95,0,25)=5.

L=(x+z)(y+w)λ2(x2+y2+z2+w2)

Lx=y+wλx,Ly=x+zλy,Lz=y+wλz,Lw=x+zλw x0+z0=λy0=λw0,y0+w0=λx0=λz0

If λ=0, then all (x0,y0,x0,w0) with 2x02+y02+w02=1 and all (x0,y0,z0,y0) with x02+2y02+z02=1 are constrained critical points, with f(x0,y0,x0,w0)=0 and f(x0,y0,z0,y0).

If λ0, then y0=w0 and x0=z0, so 2x0=λy0,2y0=λx0,2z0=λw0,2w0=λz0, and 2x0=λy0=λ2(2y0)=λ22x0 and 2z0=λw0=λ2(2w0)=λ22z0. If λ2, then x0=y0=z0=w0, which does not satisfy the constraint. If λ=2, then x0=y0=z0=w0=±12 and(x0+z0)(y0+w0)=1. If λ=2, then x0=y0=z0=w0=±12 and(x0+z0)(y0+w0)=1. Therefore, the constrained maximum is 1, attained at ±(12,12,12,12) the constrained minimum is 1, attained at ±(12,12,12,12).

L=(x+z)(y+w)λ2(x2+y2)μ2(z2+w2)

Lx=y+wλx,Ly=x+zλy,Lz=y+wμz,Lw=x+zμw (A)x0+z0=λy0=μw0,y0+w0=λx0=μz0

If λ=μ=0, then z0=x0 and w0=y0, (x0,y0,x0,y0) satisfies the constraints and f(x0,y0,x0,y0)=0 for all (x0,y0) such that x02+y02=1.

If λ=0 and μ0, then z0=w0=0, which does not satisfy the constraint z2+y2=1. If μ=0 and λ0, then x0=y0=0, which does not satisfy the constraint x2+y2=1.

Now assume that λ, μ0. From (A), λ(x02+y02)=μ2(z02+w02), so λ=±μ. If λ=μ, (A) implies that y0=w0 and x0=z0, so again (x0,y0,x0,y0) satisfies the constraints and f(x0,y0,x0,y0)=0 for all (x0,y0) such that x02+y02=1.

If λ=μ, (A) becomes x0+z0=λy0=λw0,y0+w0=λx0=λz0, so y0=w0, x0=z0, 2x0=λy0, and 2y0=λx0, 4x0=2λy0=λ2x0, so λ=±2.

If λ=2, x0=y0=z0=w0. To satisfy the constraints,

(x0,y0,z0,w0)=±(12,12,12,12), so and the constrained maximum is f(x0,y0,z0,w0)=2.

If λ=2, x0=y0=z0=w0. To satisfy the constraints, (x0,y0,z0,w0)=±(12,12,12,12), so and the constrained minimum is f(x0,y0,z0,w0)=2.

L=(x+z)(y+w)λ2(x2+z2)μ2(y2+w2)

Lx=y+wλx,Ly=x+zμy,Lw=x+zμw,Lz=y+wλz

y0+w0=λx0, x0+z0=μy0, x0+z0=μw0, y0+w0=λz0

If μ=0, then x0=z0, so the constrained critical points are ±(12,y0,12,w0) for all (y0,w0) such that y02+w02=1; f=0 at all such points.

If λ=0, then y0=w0, so the constrained critical points are ±(x0,12,z0,12) for all (x0,z0) such that x02+z02=1; f=0 at all such points.

Now suppose that λμ0. Since λx0=λz0 and μy0=μw0, x0=z0 and y0=w0. Therefore, (x0,z0)=±(12,12) and (y0,w0)=±(12,12), so the constrained maximum is 2, attained at ±(12,12,12,12), and constrained minimum is 2, attained ±(12,12,12,12),

L=(x1x2)2+(y1y2)22λ2(x12+y12)μx2y2

Lx1=x1x2λx1,Lx2=x2x1μy2,Ly1=y1y2λy1,Ly2=y2y1μx2

(i) x10x20=λx10,(ii) y10y20=λy10

(iii) x20x10=μy20, (iv) y20y10=μx20

Since 0<x10<x20 and 0<y10<y20, λ<0 and μ>0 Since x200, λ1, (i) and (ii) imply that (v) x10y20=y10x20. From (i) and (iii), (vi) λx10=μy20; from (ii) and (iv), (vii) λy10=μx20. Since x20y20=1, (vi) and (vii) imply that x10x20=y10y20. This and (v) imply that x10y10=x20y20=y20x20. Therefore, x20=y20=1 and x10=y10=12, so (x10x20)2+(y10y20)2=2(112)2 and the distance between the curves is 21.

L=12(x2α2+y2β2+z2γ2)λ(ax+by+cz)

Lx=xα2λa,Ly=yβ2λb,Lz=zγ2λc x0=λaα2,y0=λbβ2,z0=λcγ2 ax0+by0+cz0=λ[(aα)2+(bβ)2+(cγ2)]=d,λ=d(aα)2+(bβ2)+(cγ)2 x02α2+y02β2+z02γ2=λ2[(aα)2+(bβ)2+(cγ)2]=d2(aα)2+(bβ2)+(cγ)2.

L(x1,x2,,xn)=(x1c1)2+(x2c2)2++(xncn)22 λ(a1x1+a2x2++anxn) Lxi=xiciλai, 1in. We must choose λ so that if xi0=ci+λai, 1in, then a1x10+a2x20++anxn0=a1c1+a2c2++ancn+λ(a12+a22++an2)=d, which holds if and only if λ=da1c1a2c2ancna12+a22++an2. Therefore, xi0=ci+(da1c1a2c2ancn)aia12+a22+an2,1in, and the distance from (x10,x10,,xn0) to (c1,c2,,cn) is |(da1c1a2c2ancn)ai|a12+a22+an2.

L=12i=1naixi2λ4i=1nbixi4, Lxi=aixiλbixi3, aixi02=λbixi04

i=1naixi02=λi=1nbixi04=λ, xi02=aiλbi, λ=i=1naixi02=1λi=1nai2bi, λ=(i=1nai2bi)1/2

[exer:31].

L=1pi=1naixipλqi=1nbixiq, Lxi=aixipλbixiq, aixi0p=λbixi0q

i=1naixi0p=λi=1nbixi0q=λ, xi0qp=aiλbi, xi0=(aiλbi)1/(qp), xi0p=(aiλbi)p/(qp)

λ=i=1naixi0p=λp/(pq)i=1naiq/(qp)bip/(pq), λq/(qp)=i=1naiq/(qp)bip/(pq),λ=(i=1naiq/(qp)bip/(pq))1p/q=i=1naixi0p λ is the constrained maximum if p<q, the constrained minimum if p>q, undefined if p=q.

[exer:32]. L=x2+2y2+z2+w22λ(x+y+z+3w)μ(x+y+2z+w) Lx=xλμ,Ly=2yλμ,Lz=zλ2μ,Lw=w3λμ x0=λ+μ,y0=λ+μ2,z0=λ+2μ,w0=3λ+μ x0+y0+z0+3w0=232λ+132μ=1,x0+y0+2z0+w0=132λ+132μ=2 λ=15,μ=3365,x0=413,y0=213,z0=5365,w0=665, min=689845

L=12(x2a2+y2b2+z2c2)λ(p1x+p2y+p3z)

Lx=xa2λp1, Ly=yb2λp2, Lz=zc2λp3

x0=λp1a2, y0=λp2b2, z0=λp3c2

p1x0+p2y0+p3z0=λ(p12a2+p22b2+p32c2)=d

λ=dp12a2+p22b2+p32c2, x0a=λp1a, y0b=λp2b, z0b=λp3c

x02a2+y02b2+z02c2=λ2(p12a2+p22b2+p32c2)=d2p12a2+p22b2+p32c2

L=p1x+p2y+p3zλ2(x2a2+y2b2+z2c2)

Lx=p1λxa2, Ly=p2λyb2, Lz=p3λzc2

x0=p1a2λ, y0=p2b2λ, z0=p3c2λ

x02a2+y02b2+z02c2=p12a2+p22b2+p32c2λ2=1 λ=±(p12a2+p22b2+p32c2)1/2 p1x0+p2y0+p3z0=p12a2+p22b2+p32c2λ=±(p12a2+p22b2+p32c2)1/2

L=(x+1)2+(y2)2+(z3)22λ(x+2y3z)μ(2xy+2z)

Lx=x+1λ2μ,Ly=y22λ+μ,Lz=z3+3λ2μ x0=1+λ+2μ,y0=2+2λμ,z0=33λ+2μ x0+2y03z04=10+14λ6μ,2x0y0+2z05=36λ+9μ 7λ3μ=5,2λ+3μ=1,λ=1815,μ=1715 (x0,y0,z0)=(3715,4915,2515), (x0+1)2+(y02)2+(z03)2=[(5215)+(1915)2+(2015)2]1/2=69345

L=2x+y+2zλ2(x2+y2)μ(x+z)

Lx=2λxμ,Ly=1λy,Lz=2μ μ=2, so λx0=0. Since λy0=1, λ0; hence, x0=0. Since x02+y02=4, y0=±2. Therefore, (0,2,2) and (0,2,2), are constrained extreme points, and the constrained extreme values are f(0,2,2)=6 and f(0,2,2)=2.

Let (x1,y1) be on the parabola, (x2,y2) on the line. L=(x1x2)2+(y1y2)22λ(y1x12)μ(x2+y2). Lx1=x1x2+2λx1,Lx2=x2x1μ, Ly1=y1y2λ,Ly2=y2y1μ x10x20=2λx10x20x10=μy10y20=λ(i)y20y10=μ(ii) From (i) and (ii), λ=μ, so x10x20=2μx10(i)x20x10=μ (ii)y20y10=μ (iii) From (i) and (ii), x10=1/2, so y10=1+x102=5/4 and 2μ=x20+y20x10y10=1+1254=74, since x20+y20=1 (constraint). Therefore, μ=7/8 so (ii) and (iii) imply that x20=x10=μ=1278=118 andy20=y1078=5478=38. The distance between the line and the parabola is (x10x20)2+(y10y20)2=742.

Let (x1,y1,z1) be on the ellipsoid and (x2,y2,z2) be on the plane. L=(x1x2)2+(y1y2)2+(z1z2)22λ2(3x12+9y12+6z12)μ(x2+y2+2z2). Lx1=x1x23λx1=0,Ly1=y1y29λy1=0,Lz1=z1z26λz1 Lx2=x2x1μ,Ly2=y2y1μ,Lz2=z2z12μ x10x20=3λx10y10y20=9λy10z10z20=6λz10x20x10=μy20y10=μz20z10=2μ Therefore, 3λx10=μ, 9λy10=μ, and 3λz10=μ, so y10=x1/3 and z10=x10. Since (x10,x10/3,x10) is on the ellipsoid if and only if x10=±1, either  (a)(x10,y10,z10)=(1,13,1) or (b)(x10,y10,z10)=(1,13,1). Since (A)x2=x1+μ,y2=y1+μ,z2=z1+2μ, (B)(x10x20)2+(y10y20)2+(z10z20)=6μ2, sod=μ.6. Since 3x20+3y20+6z20=70, (A) implies that μ=703x103y106z1018,

In Case (a) μ=103 so (A) implies that d=1063 In case (b) μ=409>103, so the distance between the plane and the ellipsoid is 1063.

L=xy+yz+zxλ2(x2a2+y2b2+z2c2) Lx=y+zλxa2,Ly=z+xλyb2,Lz=x+yλzc2 y0+z0=λx0a2,z0+x0=λy0b2,x0+y0λz0c2 [0a2a2b20b2c2c20][x0y0z0]=λ[x0y0z0] x0(y0+z0)=λx02a2,y0(z0+x0)=λy02b2,z0(x0+y0)=λz02c2,

x0(y0+z0)+y0(z0+x0)+z0(x0+y0)=λ(x02a2+y02b2+z02c2)=λ

L=xy+2yz+2zxλ(x2a2+y2b2+z2c2) Lx=y+2z2λxa2,Ly=x+2z2λyb2,Lz=2x+2y2λzc2 y0+2z0=2λx0a2,x0+2z0=2λy0b2,2x0+2y02λz0c2

[0a2/2a2b2/20b2c2c20][x0y0z0]=λ[x0y0z0].

x0(y0+2z0)=2λx02a2,y0(x0+2z0)=2λy02b2;z0(2x0+2y0)=2λz02c2, x0(y0+2z0)+y0(x0+2z0)+z0(2x0+2y0)2=λ(x02a2+y02b2+z02c2)=λ,

L=xz+yzλ2(x2a2+y2b2+z2c2) Lx=zλxa2,Ly=zλyb2,Lz=x+yλzc2 z0=λx0a2,z0=λy0b2,x0+y0=λz0c2, soa2λ+b2λ=λc2. Therefore, λ=±|c|a2+b2. To determine z0, note that x0=a2z0λ and y0=b2z0λ. Therefore, 1=x02a2+y02b2+z02c2=(a2+b2λ2+1c2)z02=2z02c2, so z0=±|c|2 and(x0,y0,z0)=±(a22(a2+b2),b22(a2+b2),|c|2) (x0+y0)z0=λz02c2=±λ2=±|c|a2+b22.

L=xαyβzγλ(axp+byq+czr)

Lx=αxα1yβzγλpaxp1,Ly=βxαyβ1zγλqbyq1 Lz=γxαyβzγ1λrczr1 pαax0p=qβby0q=rγcz0q=C where C is to be determined as follows: ax0p=Cαp,by0q=Cβq,cz0q=Cγr From the constraint, ax0p+by0p+cz0r=1, so C=(αp+βq+γr)1 andx0py0qz0r=αβγpqr(αp+βq+γr)3.

L=xwyzλ(x2+2y2)2μ(2z2+w2)2

Lx=wλx,Ly=z2λy,Lz=y2μz,Lw=xμw w0=λx0,z0=2λy0,y0=2μz0,x0=μw0 The first and last equality imply that w0=λμw0 and z0=4λμz0. Since
2z02+w02=9, w0 and z0 cannot both be zero, so either λμ=1 or 4λμ=1.

If λμ=1, z0=y0=0, x02=4, and w02=9, so the constrained critical values are f(2,0,0,3)=f(2,0,0,3)=6 andf(2,0,0,3)=f(2,0,0,3)=6.

If 4λμ=1, then x0=w0=0, y02=2 and z02=9/2, so the constrained critical values are f(0,2,32,0)=f(0,2,32,0)=3 and f(0,2,32,0)=f(0,2,32,0)=3. Hence the constrained maximum and minimum values are 3 and 3.

L=xwyzλ2(ax2+by2)μ2(cz2+dw2)

Lx=waλx,Ly=zbλy, Lz=ycμz=0,Lw=xdμw=0 x0=μdw0,y0=cμz0,z0=bλy0, andw0=λax0. This implies that x0w0y0z0=λ(ax02+by02)=λ andx0w0y0z0=μ(cz02+dw02)=μ, so λ=μ. Therefore, x0=λdw0,y0=cλz0,z0=bλy0, andw0=λax0, so z0=bcλ2z0 and w0=adλ2w0. Since cz02+dw02=1, w0 and z0 cannot both be zero; hence, either adλ2=1 or bcλ2=1.

Suppose that adbc. If λ2ad=1, then λ2bc1, so z0=y0=0, and the constraints imply that x02=1/a, and w02=1/d. Therefore, the constrained maximum is 1ad, attained at±(1a,0,0,1d) and the constrained minimum is 1ad, attained at±(1a,0,0,1d). If λ2bc=1, then λ2ad1, so x0=w0=0 and the constraints imply that y02=1/b and z02=1/c. Therefore, the constrained maximum is 1bc, attained at±(0,1b,1c,0), and the constrained minimum is 1bc, attained at±(0,1b,1c,0).

Suppose that ad=bc. Since x0=λdw0 and y0=cλz0, 1=ax02+by02=λ2[(ad)dw02+(bc)cz02]=λ2ad(cz02+d(w0)2=λ2ad, so λ=±1ad=±1bc. Therefore, the constrained maximum value of f is 1ad=1bc, is attained at all points of the form (w0da,z0cb,z0,w0) and the constrained minimum value of f is 1ad=1bc, attained at all points of the form (w0da,z0cb,z0,w0) where, in both cases, cz02+dw02=1. Alternatively, all the constrained maximum points are of the form (x0,y0,y0bc,x0ad) and all the constrained minimum points are of the form (x0,y0,y0bc,x0ad) where, in both cases, ax02+by02=1.

L=αx2+βy2+γz22λ(a1x+a2y+a3z)μ(b1x+b2y+b3z)

Lx=αxλa1μb1,Ly=βyλa2μb2,Lz=γyλa3μb3

(A)x0=λa1+μb1α,y0=λa2+μb2β,z0=λa3+μb3γ.

(B)a1(λa1+μb1)α+a2(λa2+μb2)β+a3(λa3+μb3)γ=c.

(C)b1(λa1+μb1)α+b2(λa2+μb2)β+b3(λa3+μb3)γ=d.

Assume that u=a1αi+a2βj+a3γk andv=b1αi+b2βj+b3γk are linearly independent. Then (B) and (C) can be written as (D)|u|2λ+(uv)μ=c,(uv)λ+|v|2μ=d. Since u and v are linearly independent, Δ=def|u|2|v|2(uv)20. Therfore the solution of (D) is λ=c|v|2d(uv)Δ,μ=d|u|2c(uv)Δ. From (A), αx02+βy02+γz02=(λa1+μb1)2+(λa2+μb2)2+(λa3+μb3)2=λ2(a12+a22+a32)+μ2(b12+b22+b32)+2λμ(a1b1+a2b2+a3b3).

L=12i=1n(xiαi)2λi=1naixiμi=1nbixi

Lxi=xiαiλaiμibi,xi0=αi+λai+μbi c=i=1naixi0=i=1naiαi+λi=1nai2+μi=1naibi=i=1naiαi+λ

d=i=1nbixi0=i=1nbiαi+λi=1naibi+μi=1nbi2=i=1nbiαi+μ

λ=ci=1naiαi,μ=di=1nbiαi i=1n(xi0αi)2=i=1n(λai+μbi)2=λ2i=1nai2+2λμi=1naibi+μ2i=1nbi2=λ2+μ2=(ci=1naiαi)2+(di=1nbiαi)2

L=12i=1nxi2λi=1nxiμi=1njxi; Lxi=xiλμi, so xi0=λ+μi. To satisfy the constraints, (A)i=1n(λ+μi)=1 andi=1ni(λ+μi)=0. Let s0=n,s1=j=1ni=n(n+1)2, ands2=i=1ni2=n(n+1)(2n+1)6. Then (A) is equvalent to, [s0s1s1s2][λμ]=[10].

By Cramer’s rule, λ=s2s0s2s12=2(2n+1)n(n1) andμ=s1s0s2s12=6n(n1). Therefore, xi0=4n+26in(n1),1in.

If i=1nyi=1 andi=1niyi=0, theni=1n(yixi0)xi0=0, so i=1nyi2=i=1n(yixi0+xi0)2+i=1n(yixi0)2+2i=1n(yixi0)xi0+i=1nxi02=i=1n(yixi0)2+i=1nxi02>i=1nxi02 if yixi0 for some i{1,2,,n}.

L=f(X)λ(x1+x2++xn)

Lxi=pif(X)sxiλ, sosx10p1=sx20p2==sxn0pn= defC. xi0=sCpi, 1in. Denote P=p1+p2++pn.

x1+x2++xn=nsC(p1+p2++pn)=nsCP=s. C=(n1)sP;xi0=[P(n1)]spiP. fmax=CPp1p1p2p2pnpn=[(n1)sP]Pp1p1p2p2pnpn

[exer:49]. L(X)=f(X)λi=1nxiσi, Lxi=pif(X)xiλσi, so xi0σi=Cpi. To satisfy the constraint, C=(p1+p2+pn)1, so xi0=piσiSp1+p2++pn. and x10p1x20p2xn0pn=(Sp1+p2++pn)p1+p2++pn(p1σ1)p1(p2σ2)p2(pnσn)pn

L=i=1nxiσiλx1p1x2p2xnpn, Lxi=1σiλpiVxi, xi0σi=Cpi, where C must be chosen to satisfy the constraints.

xi0=Cσipi, xi0pi=(Cσipi)pi, V=(Cσ1p1)p1(Cσ2p2)p2(Cσn)pn Cp1+p2++pn=V(σ1p1)p1(σ2p2)p2(σnpn)pn

C=(V(σ1p1)p1(σ2p2)p2(σnpn)pn)1p1+p2++pn xi0σi=pi(V(σ1p1)p1(σ2p2)p2(σnpn)pn)1p1+p2++pn

i=1nxi0σi=(p1+p2++pn)(V(σ1p1)p1(σ2p2)p2(σnpn)pn)1p1+p2++pn.

L=12i=1n(xici)2αiλ(a1x1+a2x2++anxn)

Lxi=xiciαiλai,xi0=ci+λaiαi i=1naixi0=i=1naici+λi=1nai2αi=d,λ=di=1naicii=1nai2αi i=1n(xi0ci)2αi=λ2i=1nai2αi=(di=1naici)2i=1nai2αi

It suffices to extremize i=1naixi subject to i=1nxi2=σ2 for arbitrary σ>0. L=i=1naixiλ2i=1nxi2,Lyi=aiλxi,ai=λxi0, i=1nai2=λ2i=1nxi02=λ2σ2 i=1naixi0=λi=1nxi02=λσ2=(λσ)σ=±(i=1nai2)1/2(i=1nxi02)1/2

For every σ>0, f(X)=xm)=x1r1x2r2xmrm assumes a maximum value on the closed set Sσ={(x1,x2,,xm)|xi>0,1im,r1x1+r2x2++rmxm=σ}. L=x1r1x2r2xmrmλi=1mrixi,Lxi=ri(x1r1x2r2xmrmxiλ),1im. Therefore, the constrained extremum is attained at x1=x2==xm=σ/r, and the value of the constrained extremum is (σ/r)r, so (x1r1x2r2xmrm)1/rσr=r1x1+r2x2++rkxkr with equality if and only if x1=x2==xm=σ/r.

The statement is trivial if σi=0 for some i. If σi0, 1im, then Exercise [exer:53] with ri=1pi and xi=|aij|piσi implies that |a1j||a2j||amj|σ11/p1σ21/p2σm1/pmi=1m|aij|pipiσi. Summing both sides from j=1 to n yields the stated conclusion.

L=12r=0nxr2s=0mλsr=0nxrrs, Lxr=xrs=0mλsrs xr0=s=0mλsrs,0rn. r=0nxr0rs=r=0n=0mλr+s==0mλr=0nr+s==0mσs+λ=cs,0sm, so (x10,x20,,xn0) is a critical point of L. To see that it is constrained minimum point of Q, suppose that (y0,y1,,yn) also satisfies the constraints; thus, r=0nyrrs=cs,0sm. Then r=0n(yrxr0)xr0=r=0n(yrxr0)s=0mλsrs=s=0mλsr=0n(yrxr0)rs=0, so r=0nyr2=r=0n(yrxr0+xr0)2=r=0n[(yrxr0)2+2(yrxr0)xr0+xr02]=r=0n[(yrxr0)2+r=0nxr02>r=0nxr02.

Imposing the constraint with r=0 and P(x)=xs, 1s2k, yields the necessary condition (A)i=nnwiis={1if s=0,0if 1s2k. If P is an arbitrary polynomial of degree 2k and r is an arbitrary integer, then
P(ri)=P(r)+ a linear combination of i, i2, …, i2k, so (A) implies that i=nnwiP(ri)=P(r) whenever r is an integer and P is a polynomial of degree 2k. Therefore, L=12i=nnwi2r=02kλri=nnwiir, Lwi=wir=02kλrir,wi0=r=02kλrir,nin, and i=nnwi0is=i=nn(r=02kλrir)is=r=02kλrσr+s whereσm=i=nnim.

If {wi}i=nn also satisfies the constraint, then i=nn(wiwi0)wi0=i=nn(wiwi0)r=02kλrir=0. Therefore, i=nnwi2=i=nn(wi0+wiwi0)2=i=nn(wi02+2(wiwi0)wi0+(wiwi0)2)=i=nnwi02+i=nn(wiwi0)2>i=nnwi02 if wiwi0 for some i.

The coefficients w0, w1, …, wk satisfy the constraint if and only if i=0nwi(ri)j=(r+1)j,0jk, for all integers r. This is equivalent to i=0nwis=0j(1)s(js)sjrjs=s=0j(js)rjs,0jk, which is equivalent to (A)i=0nwiis=(1)s,0sk. L=12i=0kwi2r=0kλri=0kwiir;Lxi=wir=0kλrir;wi0=r=0kλrir. Now must choose λ1, λ2, …, λk to satisfy (A).

i=0nwi0isr=0kλrir=r=0kλri=0nir+s=r=0kσr+sλr=(1)s,0sk.

If {wi}i=0n also satisfies the constraint, then i=0n(wiwi0)wi0=i=nn(wiwi0)r=02kλrir=0. Therefore, i=0nwi2=i=0n(wi0+wiwi0)2=i=0n(wi02+2(wiwi0)wi0+(wiwi0)2)=i=0nwi02+i=nn(wiwi0)2>i=0nwi02 if wiwi0 for some i.

L=12i=1n(xici)2αis=1mλsi=1naisxi

Lxi=xiciαi,xi0=ci+αis=1mλsais

i=1nairxi0=i=1nairci+s=1mλsi=1nαiairais=i=1nairci+λr=dr

λr=dri=1nairci,(xici)2αi=αir,s=1mλrλsairais

i=1n(xici)2αi=r,s=1mλrλsi=1nαiairais=r=1mλr2=r=1m(dri=1nairci)2


This page titled 6: Exercises is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?