5: Proof of Theorem 1
( \newcommand{\kernel}{\mathrm{null}\,}\)
For notational convenience, let rℓ=ℓ, 1≤ℓ≤m, so Equation ??? becomes
|∂g1(X0)∂x1∂g1(X0)∂x2⋯∂g1(X0)∂xm∂g2(X0)∂x1∂g2(X0)∂x2⋯∂g2(X0)∂xm⋮⋮⋱⋮∂gm(X0)∂x1∂gm(X0)∂x2⋯∂gm(X0)∂xm|≠0
Denote
U=(xm+1,xm+2,…xn)\; and\;\;U0=(xm+1,0,xm+2,0,…xn0).
From Equation ???, the Implicit Function Theorem implies that there are unique continuously differentiable functions hℓ=hℓ(U), 1≤ℓ≤m, defined on a neighborhood N of U0, such that
(h1(U),h2(U),…,hm(U),U)∈D,\; for all\;\;U∈N,
(h1(U0),h2(U0),…,hm(U0),U0)=X0,
and
gℓ(h1(U),h2(U),…,hm(U),U)=0,U∈N,1≤ℓ≤m.
Again from Equation ???, the system
[∂g1(X0)∂x1∂g1(X0)∂x2⋯∂g1(X0)∂xm∂g2(X0)∂x1∂g2(X0)∂x2⋯∂g2(X0)∂xm⋮⋮⋱⋮∂gm(X0)∂x1∂gm(X0)∂x2⋯∂gm(X0)∂xm][λ1λ2⋮λm]=[fx1(X0)fx2(X0)⋮fxm(X0)]
has a unique solution. This implies that
∂f(X0)∂xi−λ1∂g1(X0)∂xi−λ2∂g2(X0)∂xi−⋯−λm∂gm(X0)∂xi=0
for 1≤i≤m.
If m+1≤i≤n, differentiating Equation ??? with respect to xi and recalling Equation ??? yields
∂gℓ(X0)∂xi+m∑j=1∂gℓ(X0)∂xj∂hj(X0)∂xi=0,1≤ℓ≤m.
If X0 is local extreme point f subject to g1(X)=g2(X)=⋯=gm(X)=0, then U0 is an unconstrained local extreme point of f(h1(U),h2(U),…hm(U),U); therefore,
∂f(X0)∂xi+m∑j=1∂f(X0)∂xj∂hj(X0)∂xi=0.
The last two equations imply that
|∂f(X0)∂xi∂f(X0)∂x1∂f(X0)∂x2⋯∂f(X0)∂xm∂g1(X0)∂xi∂g1(X0)∂x1∂g1(X0)∂x2⋯∂g1(X0)∂xm∂g2(X0)∂xi∂g2(X0)∂x1∂g2(X0)∂x2⋯∂g2(X0)∂xm⋮⋮⋮⋱⋮∂gm(X0)∂xi∂gm(X0)∂x1∂gm(X0)∂x2⋯∂gm(X0)∂xm|=0,
so
|∂f(X0)∂xi∂g1(X0)∂xi∂g2(X0)∂xi…∂gm(X0)∂xi∂f(X0)∂x1∂g1(X0)∂x1∂g2(X0)∂x1…∂gm(X0)∂x1∂f(X0)∂x2∂g1(X0)∂x2∂g2(X0)∂x2…∂gm(X0)∂x2⋮⋮⋮⋱⋮∂f(X0)∂xm∂g1(X0)∂xm∂g2(X0)∂xm…∂gm(X0)∂xm|=0.
Therefore, there are constant c0, c1, …cm, not all zero, such that
[∂f(X0)∂xi∂g1(X0)∂xi∂g2(X0)∂xi…∂gm(X0)∂xi∂f(X0)∂x1∂g1(X0)∂x1∂g2(X0)∂x1…∂gm(X0)∂x1∂f(X0)∂x2∂g1(X0)∂x2∂g2(X0)∂x2…∂gm(X0)∂x2⋮⋮⋮⋱⋮∂f(X0)∂xm∂g1(X0)∂xm∂g2(X0)∂xm…∂gm(X0)∂xm][c0c1c3⋮cm]=[000⋮0].
If c0=0, then
[∂g1(X0)∂x1∂g1(X0)∂x2⋯∂g1(X0)∂xm∂g2(X0)∂x1∂g2(X0)∂x2⋯∂g2(X0)∂xm⋮⋮⋱⋮∂gm(X0)∂x1∂gm(X0)∂x2⋯∂gm(X0)∂xm][c1c2⋮cm]=[00⋮0]
and Equation ??? implies that c1=c2=⋯=cm=0; hence, we may assume that c0=1 in a nontrivial solution of Equation ???. Therefore,
[∂f(X0)∂xi∂g1(X0)∂xi∂g2(X0)∂xi…∂gm(X0)∂xi∂f(X0)∂x1∂g1(X0)∂x1∂g2(X0)∂x1…∂gm(X0)∂x1∂f(X0)∂x2∂g1(X0)∂x2∂g2(X0)∂x2…∂gm(X0)∂x2⋮⋮⋮⋱⋮∂f(X0)∂xm∂g1(X0)∂xm∂g2(X0)∂xm…∂gm(X0)∂xm][1c1c2⋮cm]=[000⋮0],
which implies that
[∂g1(X0)∂x1∂g1(X0)∂x2⋯∂g1(X0)∂xm∂g2(X0)∂x1∂g2(X0)∂x2⋯∂g2(X0)∂xm⋮⋮⋱⋮∂gm(X0)∂x1∂gm(X0)∂x2⋯∂gm(X0)∂xm][−c1−c2⋮−cm]=[fx1(X0)fx2(X0)⋮fxm(X0)]
Since Equation ??? has only one solution, this implies that cj=−λj, 1≤j≤n, so Equation ??? becomes
[∂f(X0)∂xi∂g1(X0)∂xi∂g2(X0)∂xi…∂gm(X0)∂xi∂f(X0)∂x1∂g1(X0)∂x1∂g2(X0)∂x1…∂gm(X0)∂x1∂f(X0)∂x2∂g1(X0)∂x2∂g2(X0)∂x2…∂gm(X0)∂x2⋮⋮⋮⋱⋮∂f(X0)∂xm∂g1(X0)∂xm∂g2(X0)∂xm…∂gm(X0)∂xm][1−λ1−λ2⋮−λm]=[000⋮0].
Computing the topmost entry of the vector on the left yields yields Equation ???, which completes the proof.
[example:9] Minimize n∑i=1x2i subject to
n∑i=1arixi=cr,1≤r≤m,
where
n∑i=1ariasi={1if r=s,0if r≠s.
Solution
Let
L=12n∑i=1x2i−m∑s=1λsn∑i=1asixi.
Then
Lxi=xi−m∑s=1λsasi,1≤i≤n,
so
xi0=m∑s=1λsasi1≤i≤n,
and
arixi0=m∑s=1λsariasi.
Now Equation ??? implies that
n∑i=1arixi0=m∑s=1λsn∑i=1ariasi=λr.
From this and Equation ???, λr=cr, 1≤r≤m, and Equation ??? implies that
xi0=m∑s=1csasi,1≤i≤n.
Therefore,
x2i0=m∑r,s=1crcsariasi,1≤i≤n,
and Equation ??? implies that
n∑i=1x2i0=m∑r,s=1crcsn∑i=1ariasi=m∑r=1c2r.
The next theorem provides further information on the relationship between the eigenvalues of a symmetric matrix and constrained extrema of its quadratic form. It can be proved by successive applications of Theorem [theorem:1]; however, we omit the proof.
Suppose that A=[ars]nr,s=1∈Rn×n is symmetric and let
Q(x)=n∑r,s=1arsxrxs.
Suppose also that
x1=[x11x21⋮xn1]
minimizes Q subject to ∑ni=1x2i. For 2≤r≤n, suppose that
xr=[x1rx2r⋮xnr],
minimizes Q subject to
n∑i=1x2i=1\; and\;\;n∑i=1xisxi=0,1≤s≤r−1.
Denote
λr=n∑i,j=1aijxirxjr,1≤r≤n.
Then
λ1≤λ2≤⋯≤λn\; and\;\;Axr=λrxr,1≤r≤n.
[theorem:4]