Skip to main content
Mathematics LibreTexts

The Chain Rule

  • Page ID
    625
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Our goal is to differentiate functions such as

    \[ y = (3x + 1)^{10} \nonumber \]

    The last thing that we would want to do is FOIL this out ten times. We now look for a better way.

    Definition: The Chain Rule

    If \( y = y(u) \) is a function of \(u\), and \(u = u(x) \) is a function of \(x\) then \[\dfrac{dy}{dx} = \dfrac{dy}{du} \dfrac{du}{dx} \nonumber \]

    In our example we have

    \[ y = u^{10} \nonumber \]

    and

    \[ u = 3x + 1 \nonumber \]

    so that

    \[\dfrac{dy}{dx} = \dfrac{dy}{du} \dfrac{du}{dx} \nonumber \]

    = (10u9)(3) = 30(3x+1)9

    Proof: Chain Rule

    Recall an alternate definition of the derivative:

    chain.1.gif

    Example 2

    Find f '(x) if

    \[ f(x) = (x^4 - 3x^3 + x)^5 \nonumber \]

    Solution

    Here

    \[ f(u) = u^5 \nonumber \]

    and

    \[ u(x) = x^4 - 3x^3 + x \nonumber \]

    So that the derivative is

    (5u4)(4x3 - 9x2 + 1) = [5(x4 - 3x3 + x)4](4x3 - 9x2 + 1)

    Example 3

    Find f '(x) if

    \[ f(x) = (x^3 - x + 1)^{20} \nonumber \]

    Solution

    Here

    \[ f(u) = u^{20} \nonumber \]

    and

    \[ u(x) = x^3 - x + 1 \nonumber \]

    So that the derivative is

    \[ (20u^{19})(3x^2 - 1) = \left[20(x^3 - x + 1)^{19}\right](3x^2 - 1) \nonumber \]

    Example 4

    Find f '(x) if

    \[ f(x) = (1 - x)^9 (1-x^2)^4 \nonumber \]

    Solution

    Here we need both the product and the chain rule. First the product rule

    f '(x) = [(1 - x)9][(1 - x2)4] ' + [(1 - x)9]' [(1 - x2)4]

    Now compute

    [(1 - x2)4]' = [4(1 - x2)3](-2x)

    and

    [(1 - x)9]' = [9(1 - x)8](-1)

    Putting this all together gives

    f '(x) = [(1 - x)9][4(1 - x2)3](-2x) - [9(1 - x)8] [(1 - x2)4]

    Example 5

    Find f '(x) if

    \[ f(x)= \dfrac{ (x^3 + 4x - 3)^7}{ (2x - 1)^3} \nonumber \]

    Solution

    Here we need both the quotient and the chain rule.

    \[ f'(x) = \dfrac{(2x - 1)^3\left[(x^3 + 4x - 3)^7\right]' - (x^3 + 4x - 3)^7 \left[(2x - 1)^3\right]'}{(2x - 1)^6} \nonumber \]

    We first compute

    [(x3 + 4x - 3)7]' = [7(x3 + 4x - 3)6](3x2 + 4)

    and

    [(2x - 1)3]' = [3(2x - 1)2](2)

    Putting this all together gives

    \[ f](x) = \dfrac{7(2x - 1)^3(x^3 + 4x - 3)^6(3x^2 + 4) + 6(x^3 + 4x - 3)^7 (2x - 1)^2}{ (2x - 1)^6 } \nonumber \]

    \[ f(x)= \dfrac{x^2(5 - x^3)^4 }{3 - x} \nonumber \]

     


    This page titled The Chain Rule is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?