4.1: Logs and Derivatives
( \newcommand{\kernel}{\mathrm{null}\,}\)
Definition of the Natural Logarithm
Recall that
∫xndx=xn+1n+1+C.
What is
∫x−1dx?
For x>0 we define
∫x11tdt=lnx.
Properties of lnx:
- ln1=0
- ln(ab)=lna+lnb
- ln(an)=nlna
- ln(ab)=lna−lnb
Proof of (3)
ddxlnxn=ddx∫xn11tdt
=1xn(nxn−1)=n(1x)
=nddx∫x11tdt=nlnx.
So that
lnxn
and
nlnx
have the same derivative. Hence
lnxn=nlnx+C.
Plugging in x=1 we have that C=0.
Definition of e
Let e be such that
lne=1
ie.
∫e11tdt=1.
Find the derivative of
ln(x2+1).
Solution
We use the chain rule with y=lnu so u=x2+1,
y′=(2x)(1/u)=2xx2+1.
Find the derivatives of the following functions:
- ln(lnx)
- lnxx
- (lnx)2
- ln(secx)
- ln(cscx)
- Show that y=3lnx−4 is a solution of the differential equation xy″+y′=0.
- Find the relative extrema of xlnx.
- Find the equation of the tangent line to y=3x2−lnx at (1,3).
- Find dydx for ln(xy)+2x2=30.
Larry Green (Lake Tahoe Community College)
Integrated by Justin Marshall.