Skip to main content
Mathematics LibreTexts

4.1: Differentiation and Integration of Vector Valued Functions

  • Page ID
    564
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The formal definition of the derivative of a vector valued function is very similar to the definition of the derivative of a real valued function.

    Definition: The Derivative of a Vector Valued Function

    Let \(r(t)\) be a vector valued function, then

    \[ r'(t) = \lim_{h \rightarrow 0} \dfrac{r(t+h)-r(t)}{h}.\]

    Because the derivative of a sum is the sum of the derivative, we can find the derivative of each of the components of the vector valued function to find its derivative.

    Example \(\PageIndex{1}\)

    \[ \dfrac{d}{dt} (3 \hat{\text{i}} + \sin t \hat{\text{j}}) = \cos t \hat{\text{j}} \nonumber\]

    \[ \dfrac{d}{dt} \left(3t^2\, \hat{\text{i}} + \cos{(4t)}\, \hat{\text{j}} + te^t \, \hat{\text{k}} \right) = 6t \, \hat{\text{i}} -4\sin{(t)}\,\hat{\text{j}} + (e^t + te^t)\, \hat{\text{k}} \nonumber \]

    Properties of Vector Valued Functions

    All of the properties of differentiation still hold for vector values functions. Moreover because there are a variety of ways of defining multiplication, there is an abundance of product rules.

    Suppose that \(\text{v}(t)\) and \(\text{w}(t)\) are vector valued functions, \(f(t)\) is a scalar function, and \(c\) is a real number then

    1. \(\dfrac{d}{dt} \left( \text{v}(t) + \text{w}(t) \right) = \dfrac{d}{dt}\text{v}(t) + \dfrac{d}{dt} \text{w}(t)\),
    2. \(\dfrac{d}{dt} c\text{v}(t) = c\, \dfrac{d}{dt} \text{v}(t) \),
    3. \(\dfrac{d}{dt}(f(t) \text{v}(t)) = f '(t) \text{v}(t) + f(t) \text{v}(t)'\),
    4. \( \left( v(t) \cdot \text{w}(t) \right)' = \text{v}'(t) \cdot \text{w}(t)+ \text{v}(t) \cdot \text{w}'(t)\),
    5. \((v(t) \times \text{w}(t))' = \text{v}'(t) \times \text{w}(t) + \text{v}(t) \times \text{w}'(t)\),
    6. \(\dfrac{d}{dt} v(f(t)) = \text{v}(t)'(f(t)) f '(t)\).

    Example \(\PageIndex{2}\)

    Show that if \(r\) is a differentiable vector valued function with constant magnitude, then

    \[ r \cdot r' = 0.\]

    Solution

    Since \(r\) has constant magnitude, call its magnitude \(k\),

    \[ k^2 = |r|^2 = r \cdot r.\]

    Taking derivatives of the left and right sides gives

    \[ 0 = (r \cdot r)' = r' \cdot r + r \cdot r' \]

    \[ = r \cdot r' + r \cdot r' = 2r \cdot r' . \]

    Divide by two and the result follows

    Integration of vector valued functions

    We define the integral of a vector valued function as the integral of each component. This definition holds for both definite and indefinite integrals.

    Example \(\PageIndex{3}\)

    Evaluate

    \[ \int (\sin t)\, \hat{\textbf{i}} + 2t\, \hat{\textbf{j}} - 8t^3 \, \hat{\textbf{k}} \; dt. \]

    Solution

    Just take the integral of each component

    \[ \int (\sin t)\,dt \, \hat{\textbf{i}} + \int 2\,t \, dt \, \hat{\textbf{j}} - \int 8\,t^3 \,dt \, \hat{\textbf{k}}. \]

    \[ = (-\cos t + c_1)\, \hat{\textbf{i}} + (t^2 + c_2)\, \hat{\textbf{j}} + (2\,t^4 + c_3)\, \hat{\textbf{k}}.\]

    Notice that we have introduce three different constants, one for each component.

    Larry Green (Lake Tahoe Community College)

    • Integrated by Justin Marshall.


    4.1: Differentiation and Integration of Vector Valued Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?