Skip to main content
Mathematics LibreTexts

2.6: The Binomial Theorem

  • Page ID
    97857
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Here is a truly basic result from combinatorics kindergarten.

    Theorem 2.30. Binomial Theorem

    Let \(x\) and \(y\) be real numbers with \(x\), \(y\) and \(x+y\) non-zero. Then for every non-negative integer \(n\),

    \((x+y)^n = \displaystyle \sum_{i=0}^n \dbinom{n}{i} x^{n-i}y^i\)

    Proof

    View \((x+y)^n\) as a product

    \((x+y)^n = \underbrace{(x+y)(x+y)(x+y)(x+y)...(x+y)(x+y)}_{n factors}\).

    Each term of the expansion of the product results from choosing either \(x\) or \(y\) from one of these factors. If \(x\) is chosen \(n−i\) times and \(y\) is chosen \(i\) times, then the resulting product is \(x^{n-i}y^i\). Clearly, the number of such terms is \(C(n,i)\), i.e., out of the \(n\) factors, we choose the element \(y\) from \(i\) of them, while we take \(x\) in the remaining \(n-i\).

    Example 2.31

    There are times when we are interested not in the full expansion of a power of a binomial, but just the coefficient on one of the terms. The Binomial Theorem gives that the coefficient of \(x^5y^8\) in \((2x-3y)^{13}\) is \(\binom{13}{5}2^5(-3)^8\).

    k


    This page titled 2.6: The Binomial Theorem is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Mitchel T. Keller & William T. Trotter via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.