Skip to main content
Mathematics LibreTexts

3.1: Boolean Polynomials

  • Page ID
    83409
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We can proceed more algebraically by assigning value \(0\) to represent false and value \(1\) to represent true.

    Example \(\PageIndex{1}\): Boolean Multiplication

    Comparing the two tables below, we see that Boolean multiplication is equivalent to logical conjunction.

    \(x\) \(y\) \(x y\)
    \(1\) \(1\) \(1\)
    \(1\) \(0\) \(0\)
    \(0\) \(1\) \(0\)
    \(0\) \(0\) \(0\)
    \(p\) \(q\) \(p \land q\)
    \(T\) \(T\) \(T\)
    \(T\) \(F\) \(F\)
    \(F\) \(T\) \(F\)
    \(F\) \(F\) \(F\)

    Example \(\PageIndex{2}\): Boolean addition.

    Comparing the following two tables, we see that Boolean addition is equivalent to exclusive or.

    Boolean Arithmetic

    Notice that in the first row for Boolean addition, we use mod \(2\) arithmetic to define \(1+1 = 0\text{.}\)

    \(x\) \(y\) \(x + y\)
    \(1\) \(1\) \(0\)
    \(1\) \(0\) \(1\)
    \(0\) \(1\) \(1\)
    \(0\) \(0\) \(0\)
    \(p\) \(q\) \(\neg (p \leftrightarrow q)\)
    \(T\) \(T\) \(F\)
    \(T\) \(F\) \(T\)
    \(F\) \(T\) \(T\)
    \(F\) \(F\) \(F\)

    Example \(\PageIndex{3}\): Boolean Disjunction

    In Boolean arithmetic we may realize disjunction by combining both addition and multiplication.

    \(x\) \(y\) \(x + y + x y\)
    \(1\) \(1\) \(1\)
    \(1\) \(0\) \(1\)
    \(0\) \(1\) \(1\)
    \(0\) \(0\) \(0\)
    \(p\) \(q\) \(p \lor q\)
    \(T\) \(T\) \(T\)
    \(T\) \(F\) \(T\)
    \(F\) \(T\) \(T\)
    \(F\) \(F\) \(F\)

    Example \(\PageIndex{4}\): Boolean Negation

    In Boolean algebra, negation is just a matter of shifting one value to the next.

    \(x\) \(x + 1\)
    \(1\) \(0\)
    \(0\) \(1\)
    \(p\) \(\neg p\)
    \(T\) \(F\)
    \(F\) \(T\)

    For notation, we borrow symbols \(\land \) and \(\lor\) from logic, but add new negation notation.

    \(x'\) Boolean negation

    With this notation setup, we have

    \begin{align*} x \land y & = x y \text{,} & x \lor y & = x + y + x y \text{,} & x' & = x + 1 \text{.} \end{align*}

    Definition: Boolean Polynomial

    an expression involving variables \(x_1, x_2, \ldots, x_m\) representing Boolean values, and operations \(\land , \lor, '\text{,}\) often written in function notation

    Note \(\PageIndex{1}\)

    Every Boolean polynomial can be interpreted as a logical statement.

    Example \(\PageIndex{5}\)

    There are two special constant Boolean polynomials, the zero polynomial and the unit polynomial:

    \begin{align*} 0(x_1,x_2,\ldots,x_m) & = 0 \text{,} & 1(x_1,x_2,\ldots,x_m) & = 1 \text{.} \end{align*}

    Example \(\PageIndex{6}\)

    The Boolean polynomials \(p(x,y) = x' \lor y\) and \(q(x,y) = (x \land y')'\) have the same truth table.

    \(x\) \(y\) \(x'\) \(p(x,y)\) \(y'\) \(x \land y'\) \(q(x,y)\)
    \(1\) \(1\) \(0\) \(1\) \(0\) \(0\) \(1\)
    \(1\) \(0\) \(0\) \(0\) \(1\) \(1\) \(0\)
    \(0\) \(1\) \(1\) \(1\) \(0\) \(0\) \(1\)
    \(0\) \(0\) \(1\) \(1\) \(1\) \(0\) \(1\)

    Using our knowledge of logical equivalence, we see that the truth tables are the same because as logical statements, \(p\) and \(q\) are equivalent by DeMorgan.

    Definition: Equivalent Polynomials

    Boolean polynomials which represent equivalent logical statements


    This page titled 3.1: Boolean Polynomials is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.