4.5: Exercises
- Page ID
- 86959
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Interpreting symbolic language
Let \(A(x)\) represent the predicate “\(x\) is a wonderful learning experience”, where \(x\) is a free variable in the domain of all university courses.
Translate each of the following into an English sentence that is grammatically correct.
- \(A(\text{AUMAT 250})\)
- \((\exists x)A(x)\)
- \((\forall x)A(x)\)
- \(\neg (\forall x)A(x)\)
- \((\exists x)\neg A(x)\)
Translating into symbolic language.
Let \(B(x)\) represent the predicate “\(x\) is excellent”, where \(x\) is a free variable in the domain of all Augustana professors.
Translate each of the following into symbolic language.
- The instructor for this course is an excellent professor.
- Every professor at your university is excellent.
- Some professor at your university is excellent.
- Some professors at your university are excellent.
- There is at least one professor at your university who is excellent.
- Some professor at your university is not excellent.
- Some professors at your university are not excellent.
- Any professor at your university is excellent.
- No professor at your university is excellent.
Analyzing predicate statements about integers
Let \(P(m,n)\) represent the predicate \(2m - 45n > 101\text{,}\) where \(m\) and \(n\) are free variables in the domain of integers.
For each of the following, determine whether the statement is true or false. Explain your reasoning.
- \(P(25,-1)\)
- \(P(30,-1)\)
- \(P(100,2)\lor P(100,3)\)
- \(P(100,2) \land P(100,3)\)
- \((\exists m)(\exists n) P(m,n)\)
- \((\forall m)(\forall n) P(m,n)\)
- \((\forall m)(\exists n) P(m,n)\)
- \((\exists m)(\forall n) P(m,n)\)
- \((\forall m)(\exists q)(\forall n)(P(q,n)\rightarrow P(m,n))\)
Analyzing predicate statements about functions
(Requires calculus.) Let \(P(f,g)\) represent the predicate \(\frac{df}{dx} = g\text{,}\) where \(f\) and \(g\) are free variables in the domain of continuous functions in the real variable \(x\text{.}\)
For each of the following, determine whether the statement is true or false. Explain your reasoning.
- \((\exists f)(\exists g) P(f,g)\)
- \((\forall f)(\forall g) P(f,g)\)
- \((\forall f)(\exists g) P(f,g)\)
- \((\exists f)(\forall g) P(f,g)\)
- \((\forall g)(\exists f) P(f,g)\)
- \((\exists g)(\forall f) P(f,g)\)
-
Consider the statement “every odd number is either \(1\) more or \(3\) more than a mulitple of \(4\text{.}\)”
- Assign appropriate predicates (with domains explictly stated), and then translate the statement into symbolic logic.
- Negate the statement, and simplify the logical expression so that any/all negation symbols appear directly to the left of a predicate.
- Translate your simplified negated statement from Task b into English.
- Let \(P(f,g)\) represent the predicate \(\dfrac{df}{dx} = g\text{,}\) and let \(E(f,g)\) represent the predicate \(g = f\text{,}\) where \(f\) and \(g\) are free variables in the domain of functions in the real variable \(x\text{.}\) Consider the statement
- Translate the statement into English.
- Determine whether the statement is true.
- Working with the originally provided symbolic version above, negate the statement. Simplify the negated version to so that any/all negation symbols appear directly to the left of one of the predicates \(P\) or \(E\text{.}\)
- Translate your simplified negated statement from Part c into English.
- You've become an expert at predicate logic, and now make a (very meagre) living grading logic assignments for a large university. Here is the question you've been assigned to mark two thousand times.
Let \(x\) represent a free variable from the domain of all living humans.
Translate the following two statements into properly quantified predicate statements in the variable \(x\text{.}\)
- All university students study diligently.
- Some university students study diligently.
You pick up the first assignment. Here is the student's answer.
Let \(U(x)\) mean “\(x\) is a university student”. Let \(S(x)\) mean “\(x\) studies diligently”.
- \((\forall x)[ U(x) \rightarrow S(x) ]\text{.}\)
- \((\exists x)[ U(x) \rightarrow S(x) ]\text{.}\)
Are the student's answers correct? Justify your assessment.
- Hint
-
Try translating the student's symbolic language statements back into English, explicitly using the stated domain of \(x\), and see what you get.