Skip to main content
Mathematics LibreTexts

2.6: Examples of the Matrix Method

  • Page ID
    106205
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Here we will give some examples for typical systems for the three cases mentioned in the last section.

    Example 2.14. \(A=\left(\begin{array}{ll}
    4 & 2 \\
    3 & 3
    \end{array}\right)\)

    \[0=\left|\begin{array}{cc}
    4-\lambda & 2 \\
    3 & 3-\lambda
    \end{array}\right| \label{2.44} \]

    Therefore,

    \[\begin{aligned}
    &0=(4-\lambda)(3-\lambda)-6 \\
    &0=\lambda^{2}-7 \lambda+6 \\
    &0=(\lambda-1)(\lambda-6)
    \end{aligned} \label{2.45} \]

    The eigenvalues are then \(\lambda=1,6\). This is an example of Case I.


    Eigenvectors: Next we determine the eigenvectors associated with each of these eigenvalues. We have to solve the system \(A \mathbf{v}=\lambda \mathbf{v}\) in each case.

    Case \(\lambda=1\)

    \[\begin{aligned}
    &\left(\begin{array}{ll}
    4 & 2 \\
    3 & 3
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)
    \end{aligned} \label{2.46} \]

    \[\begin{aligned}
    &\left(\begin{array}{ll}
    3 & 2 \\
    3 & 2
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    0 \\
    0
    \end{array}\right)
    \end{aligned} \label{2.47} \]

    This gives \(3 v_{1}+2 v_{2}=0\). One possible solution yields an eigenvector of

    \(\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{c}
    2 \\
    -3
    \end{array}\right)\)

    Case \(\lambda=6\).

    \[\begin{aligned}
    &\left(\begin{array}{ll}
    4 & 2 \\
    3 & 3
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=6\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right) \\
    \end{aligned} \label{2.48} \]

    \[\begin{aligned}
    &\left(\begin{array}{cc}
    -2 & 2 \\
    3 & -3
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    0 \\
    0
    \end{array}\right)
    \end{aligned} \label{2.49} \]

    For this case we need to solve \(-2 v_{1}+2 v_{2}=0\). This yields

    \(\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right)\)

    General Solution: We can now construct the general solution.

    \[\begin{aligned}
    \mathbf{x}(t) &=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2} \\
    &=c_{1} e^{t}\left(\begin{array}{c}
    2 \\
    -3
    \end{array}\right)+c_{2} e^{6 t}\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right) \\
    &=\left(\begin{array}{c}
    2 c_{1} e^{t}+c_{2} e^{6 t} \\
    -3 c_{1} e^{t}+c_{2} e^{6 t}
    \end{array}\right)
    \end{aligned} \label{2.50} \]

    Example 2.15. \(A=\left(\begin{array}{ll}
    3 & -5 \\
    1 & -1
    \end{array}\right)\).

    Eigenvalues: Again, one solves the eigenvalue equation.

    \[0=\left|\begin{array}{cc}
    3-\lambda & -5 \\
    1 & -1-\lambda
    \end{array}\right| \label{2.51} \]

    Therefore,

    \[\begin{aligned}
    &0=(3-\lambda)(-1-\lambda)+5 \\
    &0=\lambda^{2}-2 \lambda+2 \\
    &\lambda=\dfrac{-(-2) \pm \sqrt{4-4(1)(2)}}{2}=1 \pm i
    \end{aligned} \label{2.52} \]

    The eigenvalues are then \(\lambda=1+i, 1-i\). This is an example of Case III.


    Eigenvectors: In order to find the general solution, we need only find the eigenvector associated with \(1+i\).

    \[\begin{aligned}
    \left(\begin{array}{c}
    3-5 \\
    1-1
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right) &=(1+i)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right) \\
    \left(\begin{array}{cc}
    2-i & -5 \\
    1 & -2-i
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)&=\left(\begin{array}{l}
    0 \\
    0
    \end{array}\right)
    \end{aligned} \label{2.53} \]

    We need to solve \((2-i) v_{1}-5 v_{2}=0\). Thus,

    \[\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{c}
    2+i \\
    1
    \end{array}\right) \label{2.54} \]

    Complex Solution: In order to get the two real linearly independent solutions, we need to compute the real and imaginary parts of \(v e^{\lambda t}\).

    \begin{aligned}
    e^{\lambda t}\left(\begin{array}{c}
    2+i \\
    1
    \end{array}\right) &=e^{(1+i) t}\left(\begin{array}{c}
    2+i \\
    1
    \end{array}\right) \\
    &=e^{t}(\cos t+i \sin t)\left(\begin{array}{c}
    2+i \\
    1
    \end{array}\right) \\
    &=e^{t}\left(\begin{array}{c}
    (2+i)(\cos t+i \sin t) \\
    \cos t+i \sin t
    \end{array}\right) \\
    &=e^{t}\left(\begin{array}{c}
    (2 \cos t-\sin t)+i(\cos t+2 \sin t) \\
    \cos t+i \sin t
    \end{array}\right)+i e^{t}\left(\begin{array}{c}
    \cos t+2 \sin t \\
    \sin t
    \end{array}\right) . \\
    &=e^{t}\left(\begin{array}{c}
    2 \cos t-\sin t \\
    \cos t
    \end{array}\right)
    \end{aligned}

    General Solution: Now we can construct the general solution.

    \[\begin{aligned}
    \mathbf{x}(t) &=c_{1} e^{t}\left(\begin{array}{l}
    2 \cos t-\sin t \\
    \cos t
    \end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}
    \cos t+2 \sin t \\
    \sin t
    \end{array}\right) \\
    &=e^{t}\left(\begin{array}{c}
    c_{1}(2 \cos t-\sin t)+c_{2}(\cos t+2 \sin t) \\
    c_{1} \cos t+c_{2} \sin t
    \end{array}\right)
    \end{aligned} \label{2.55} \]

    Note: This can be rewritten as

    \(\mathbf{x}(t)=e^{t} \cos t\left(\begin{array}{c}
    2 c_{1}+c_{2} \\
    c_{1}
    \end{array}\right)+e^{t} \sin t\left(\begin{array}{c}
    2 c_{2}-c_{1} \\
    c_{2}
    \end{array}\right)\)

    Example 2.16. \(A=\left(\begin{array}{ll}
    7 & -1 \\
    9 & 1
    \end{array}\right)\).

    Eigenvalues:

    \[0=\left|\begin{array}{cc}
    7-\lambda & -1 \\
    9 & 1-\lambda
    \end{array}\right| \label{2.56} \]

    Therefore,

    \[\begin{aligned}
    &0=(7-\lambda)(1-\lambda)+9 \\
    &0=\lambda^{2}-8 \lambda+16 \\
    &0=(\lambda-4)^{2}
    \end{aligned} \label{2.57} \]

    There is only one real eigenvalue, \(\lambda=4\). This is an example of Case II.


    Eigenvectors: In this case we first solve for \(\mathbf{v}_{1}\) and then get the second linearly independent vector.

    \[\begin{aligned}
    &\left(\begin{array}{cc}
    7 & -1 \\
    9 & 1
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=4\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right) \\
    &\left(\begin{array}{ll}
    3 & -1 \\
    9 & -3
    \end{array}\right)\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    0 \\
    0
    \end{array}\right)
    \end{aligned} \label{2.58} \]

    Therefore, we have

    \(3 v_{1}-v_{2}=0, \quad \Rightarrow \quad\left(\begin{array}{l}
    v_{1} \\
    v_{2}
    \end{array}\right)=\left(\begin{array}{l}
    1 \\
    3
    \end{array}\right)\)

    Second Linearly Independent Solution:

    Now we need to solve \(A \mathbf{v}_{2}-\lambda \mathbf{v}_{2}=\mathbf{v}_{1}\).

    \[\begin{aligned}
    \left(\begin{array}{cc}7 & -1 \\ 9 & 1\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2}\end{array}\right)-4\left(\begin{array}{l}u_{1} \\ u_{2}\end{array}\right)&=\left(\begin{array}{l}1 \\ 3\end{array}\right) \\
    \left(\begin{array}{ll}3 & -1 \\ 9 & -3\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2}\end{array}\right)&=\left(\begin{array}{l}1 \\ 3\end{array}\right)
    \end{aligned} \label{2.59} \]

    Expanding the matrix product, we obtain the system of equations

    \[\begin{array}{r}
    3 u_{1}-u_{2}=1 \\
    9 u_{1}-3 u_{2}=3
    \end{array} \label{2.60} \]

    The solution of this system is \(\left(\begin{array}{l}u_{1} \\ u_{2}\end{array}\right)=\left(\begin{array}{l}1 \\ 2\end{array}\right)\).

    General Solution: We construct the general solution as

    \[\begin{aligned}
    \mathbf{y}(t) &=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t}\left(\mathbf{v}_{2}+t \mathbf{v}_{1}\right) \\
    &=c_{1} e^{4 t}\left(\begin{array}{l}
    1 \\
    3
    \end{array}\right)+c_{2} e^{4 t}\left[\left(\begin{array}{l}
    1 \\
    2
    \end{array}\right)+t\left(\begin{array}{l}
    1 \\
    3
    \end{array}\right)\right] \\
    &=e^{4 t}\left(\begin{array}{c}
    c_{1}+c_{2}(1+t) \\
    3 c_{1}+c_{2}(2+3 t)
    \end{array}\right)
    \end{aligned} \label{2.61} \]

    2.6.1 Planar Systems - Summary

    The reader should have noted by now that there is a connection between the behavior of the solutions obtained in Section 2.2 and the eigenvalues found from the coefficient matrices in the previous examples. Here we summarize some of these cases.

    Type Figure Eigenvalues Stability
    Node Screen Shot 2022-06-29 at 10.51.04 PM.png Real \(\lambda\), same signs \(\lambda > 0\), stable
    Saddle Screen Shot 2022-06-29 at 10.52.19 PM.png Real \(\lambda\) opposite signs Mostly Unstable
    Center Screen Shot 2022-06-29 at 10.52.36 PM.png \(\lambda\) pure imaginary _____

    Focus/Spiral

    Degenerate Node

    Line of Equilibria

    Screen Shot 2022-06-29 at 10.52.57 PM.png

    Complex \(\lambda\), Re(\(\lambda \neq 0\)

    Repeated roots, \(\lambda > 0\), stable

    One zero eigenvalue

    Re(\(\lambda > 0\)), stable

    \(\lambda > 0\), stable

    Table 2.1. List of typical behaviors in planar systems.

    The connection, as we have seen, is that the characteristic equation for the associated second order differential equation is the same as the eigenvalue equation of the coefficient matrix for the linear system. However, one should be a little careful in cases in which the coefficient matrix in not diagonalizable. In Table 2.2 are three examples of systems with repeated roots. The reader should look at these systems and look at the commonalities and differences in these systems and their solutions. In these cases one has unstable nodes, though they are degenerate in that there is only one accessible eigenvector.


    This page titled 2.6: Examples of the Matrix Method is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.