Skip to main content
Mathematics LibreTexts

4.4: Problems

  • Page ID
    106225
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    4.1. Solve the following problem:

    \[x^{\prime \prime}+x=2, \quad x(0)=0, \quad x^{\prime}(1)=0. \nonumber \]

    4.2. Find product solutions, \(u(x, t)=b(t) \phi(x)\), to the heat equation satisfying the boundary conditions \(u_{x}(0, t)=0\) and \(u(L, t)=0\). Use these solutions to find a general solution of the heat equation satisfying these boundary conditions.

    4.3. Consider the following boundary value problems. Determine the eigenvalues, \(\lambda\), and eigenfunctions, \(y(x)\) for each problem.

    a. \(y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(1)=0\).
    b. \(y^{\prime \prime}-\lambda y=0, \quad y(-\pi)=0, \quad y^{\prime}(\pi)=0\).
    c. \(x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad y(1)=0, \quad y(2)=0\).
    d. \(\left(x^{2} y^{\prime}\right)^{\prime}+\lambda y=0, \quad y(1)=0, \quad y^{\prime}(e)=0\).

    4.4. For the following sets of functions: i) show that each is orthogonal on the given interval, and ii) determine the corresponding orthonormal set.

    a. \(\{\sin 2 n x\}, \quad n=1,2,3, \ldots, \quad 0 \leq x \leq \pi\).
    b. \(\{\cos n \pi x\}, \quad n=0,1,2, \ldots, \quad 0 \leq x \leq 2\).
    c. \(\left\{\sin \dfrac{n \pi x}{L}\right\}, \quad n=1,2,3, \ldots, \quad x \in[-L, L]\).

    4.5. Consider the boundary value problem for the deflection of a horizontal beam fixed at one end,

    \[\dfrac{d^{4} y}{d x^{4}}=C, \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(L)=0, \quad y^{\prime \prime \prime}(L)=0 \nonumber \]

    Solve this problem assuming that \(C\) is a constant.


    This page titled 4.4: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.