Skip to main content
Mathematics LibreTexts

6.5: Problems

  • Page ID
    106236
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    6.1. Find the adjoint operator and its domain for \(L u=u^{\prime \prime}+4 u^{\prime}-3 u, u^{\prime}(0)+ 4 u(0)=0, u^{\prime}(1)+4 u(1)=0\)

    6.2. Show that a Sturm-Liouville operator with periodic boundary conditions on \([a, b]\) is self-adjoint if and only if \(p(a)=p(b)\). [Recall, periodic boundary conditions are given as \(u(a)=u(b)\) and \(u^{\prime}(a)=u^{\prime}(b)\).]

    6.3. The Hermite differential equation is given by \(y^{\prime \prime}-2 x y^{\prime}+\lambda y=0\). Rewrite this equation in self-adjoint form. From the Sturm-Liouville form obtained, verify that the differential operator is self adjoint on \((-\infty, \infty)\). Give the integral form for the orthogonality of the eigenfunctions.

    6.4. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville problems.

    a. \(y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0=y^{\prime}(\pi)\).
    b. \(\left(x y^{\prime}\right)^{\prime}+\dfrac{\lambda}{x} y=0, y(1)=y\left(e^{2}\right)=0\).

    6.5. The eigenvalue problem \(x^{2} y^{\prime \prime}-\lambda x y^{\prime}+\lambda y=0\) with \(y(1)=y(2)=0\) is not a Sturm-Liouville eigenvalue problem. Show that none of the eigenvalues are real by solving this eigenvalue problem.

    6.6. In Example 6.10 we found a bound on the lowest eigenvalue for the given eigenvalue problem.

    a. Verify the computation in the example.

    b. Apply the method using

    \(y(x)=\left\{\begin{array}{cc}
    x, & 0<x<\dfrac{1}{2} \\
    1-x, & \dfrac{1}{2}<x<1
    \end{array}\right.\)

    Is this an upper bound on \(\lambda_{1}\)

    c. Use the Rayleigh quotient to obtain a good upper bound for the lowest eigenvalue of the eigenvalue problem: \(\phi^{\prime \prime}+\left(\lambda-x^{2}\right) \phi=0, \phi(0)=0\), \(\phi^{\prime}(1)=0\)

    6.7. Use the method of eigenfunction expansions to solve the problem:

    \[y^{\prime \prime}+4 y=x^{2}, \quad y(0)=y(1)=0 \nonumber \]

    6.8. Determine the solvability conditions for the nonhomogeneous boundary value problem: \(u^{\prime \prime}+4 u=f(x), u(0)=\alpha, u^{\prime}(1)=\beta\)


    This page titled 6.5: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.